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ABSTRACT

An introductory discussion of the mathematics behind the direc-
tional analysis of ocean waves is presented. There is sufficient
detail for a reader interested in applying the methods; further, the
report can serve as an entry into the theory. The presentation is
basically tutorial but does require a reasonably advanced mathe-
matical background. Results of a program for the measurement of
directional ocean wave bottom pressure spectra are included as an
appendix. This second edition makes corrections to the first and
adds some details of an iterative directional analysis method.

ADMINISTRATIVE INFORMATION

This report was prepared to document the mathematical methods
used in connection with work done in support of Task SWOC SR 004 03 01,
Task 0582, and applied on Task ZR 000 01 01, Work Unit 0401-40.

This report was originally issued in September 1971 as NSRDL/PC
Report 3472,
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1. INTRODUCTION

The report presents an introductory discussion of the mathematics
pertaining to the directional analysis of ocean waves. The presenta-
tion is tutorial in form but does require a reasonably complete mathe-
matical background; a background equivalent to that required in reading
Kinsman's textbook Wind Waves (1965).

The level of the presentation is moderate at the beginning. The
level picks up rapidly toward the middle but there should be sufficient
detail and redundancy in the mathématics to allow the reader to follow
the development without having to rediscover too many omitted steps.

It is in this sense that the report 1is tutorial. In some places the
mathematical development is intuitive rather than rigorous. This is
deliberate in order to provide insight and understanding. In most such
cases, references to rigorous reports are given.

The development is reasonably detailed so that the interested
reader may apply the methods presented and use the report as an entry
point into the rigorous theory of the directional analysis of ocean
waves. In this respect, 1f the report serves as a bridge across the
gap between a handbook and a rigorous and sparse theory on the subject
then the objective of the report will have been fulfilled.

The report first presents an intuitive development of a sea sur-
face model that assumes the sea surface to be a two-dimensional random
process definable in terms of a directional power spectrum. A discus-
sion of the space and time covariance function and its relationship to
the directional power spectrum follows. Both one- and two-sided power
spectra are discussed; however, the main development is in terms of
the two-sided spectrum. Next, the relationship between the power and
cross power spectrum for two fixed locations and the sea surface
directional spectrum is developed. - Explicit relationships for the
special cases of an isotropic sea and a single wave of a given direc-
tion and frequency are then obtained. The related topic of the direc-
tional resolving power of an array of wave transducers is then
presented.

Using the preliminary developments as a basis, several methods for
the directional analysis of ocean waves based on the information
obtainable' from'an array of wave transducers are presented. The methods




are basically a direction finder technique, a least square single-wave
train fit, and a Fourier-Bessel expansion fit. In conclusion, a
generalized Fourier expansion method is suggested. Extensive results
of the application of the least square single-wave train fit are pre-
sented in Appendix A. Appendix B is a FORTRAN II listing of a program
for this analysis.

2. WAVE MODELS

In its simplest form an ocean wave can be thought of as a single
frequency, sinusoidal, infinitely long crested wave of length A, moving
in time over the ocean surface from a given direction 6. Such a wave
is 1llustrated in Figure 1.

Spatial Frequency N(u,v,t,) Spatial Frequency Along
Along v axis is zero. y axis is m = K sin ©

Direction of 6 Wave

‘t,,/'Travel in Time t

u Spatial Frequency
along u axis K = 1/)\

Spatial Frequency
along x axis is
£ =K cos 6

FIGURE 1. SIMPLE OCEAN WAVE




Assume that the wave is frozen in time over the surface (the x,y
spacial plane). The coordinates (u,v) are a 6 degree rotation of the
(x,y) coordinates. The positive u axis lies along the direction from
which the wave is traveling. The wave surface n{u,v), shown frozen in
time in Figure 1 can be described mathematically by

n(u,v) = cos(2rKu + 2m¢) (2.1)

where K = 1/) is the wave number of spacial frequency in cycles per
unit length along the u axis, and 2w¢ is a spacial phase shift.

To make the wave move in time across the spacial plane with a
time frequency f = 1/p, where p is the wave period, it is necessary to
add a time part to the argument of the cosine function in the model
above. The time part is a phase shift dependent only upon time. As
time passes, the time part changes causing the cosine wave to move
across the (u,v) plane, in this case the ocean surface. Adding the time
part we get (where 2wy is a fixed time phase shift)

n(u,v,t) = cos(2rKu + 2m¢ + 27w ft + 2my).
If we combine the effect of the ¢ and Yy phase shifts as a = ¢ + ¢,
we get

n(u,v,t) = cos (2w (Ku + ft + a)) (2.2)
as a simple model of a sinusoidal wave moving in time over the ocean

surface.

Since the coordinates (u,v) are a rotation of the coordinates (x,y)
through an angle of 6 degrees, we know

]

u x cos 8 + y sin ©

1

v = -x sin 6 + y cos 6.

Using the above relations, and letting 2 = k cos 6 and m = K sin ©
be the spacial frequencies along the x and y axes, respectively, we
have '

n(x,y,t) = A cos(2r(4x + my + ft + a)) (2.3)
as a model for a wave of height 2A moving from a direction

8 = arctan (m/%) .

with a phase shift of 2wo. A wave crest of such a wave system is infi-
nite in length. A crest occurs at a set of points (x,y,t) which satisfy
the relation

2x + my + ft = a constant = (n - a)




where n = 0, -1, +1, -2, +2, ,.. . Each value of the index n relates to
a particular crest. The intersections of the crests with the x and y
axes move along the respective axes with time velocities Vy = -f/%
and V = ~f/m. This follows from the differential expressions

.Dt(u\= D*P'f'ﬁ - mfl _ﬁ{t_'l._-, -% (2.4)

(“ D". ﬁ‘x ft) £ @

obtained from the wave crest relationship given above.

From Euler's equation we know that cos y = (Exp(iy) + Exp(-iy))/2.
If we consider y as 2n(2x + my + ft + o) we can write

n(x,y,;) = 1/2A Exp(iZn(zx + my + ft + d) +
1/2A Exp (127(-4¢x - my - ft - a)) (2.6)

vhere = < L <+ =, ~» <m <+ and-» < f <+,

In the above we have introduced the notion of negative time frequencies.
This makes 1t possible to express an elementary wave in the mathemati-
cally convenient form '

n(x,y,t) = a Exp (12n(2x + my + ft + a)) - (2.7)

where a = 1/2A. In the real world a complex wave of this type implies
the existence of another wave n*(x,y,t) which is the complex conjugate
of n(x,y,t) above. This complex conjugate is given by

n*(x,y,t) a Exp (-12r(¢x + my + ft + a)) _
a Exp (12n[(-2)x + (-m)y + (-£)t + (-a)]). (2.8)

The fact that negative frequencies are considered is explicit in the
above relation.

A property of the above model, which will be used later in connec-
tion with the directional analysis of waves from measurements obtained
from an array of detectors, 1s expressed by the equation for the phase -
difference of two measurements made at two different points in space
and time. Assume we know the value of n(x,y,t) at the three-dimensional
coordinates (xp,Ye>to) and (xo+X, yo+Y, t,+T), where X, Y, and T
are constants. The phases at the two points are given by




¢(x°,yo,t°) =4x +my + fto + a, (2.9)
¢(x° + X, Yo + Y, t, + T):: z(xo + X) + m(yo + Y) + f(to +T) + o

(2.10)
This gives a phase difference of
Ap = (X + mY + £T). . : (2.11)

To obtain a more complicated wave system consisting of many waves
of various frequencies and directions, we can linearly superimpose (add
up) many waves of the form given above. If we do this, we can write

N
N (x:y.¢) =20.,. Exp(izn(bnx+may+f, ¢ +%p)) (2.12)
nmi|

For this wave system to be real, the terms must occur in complex con-
jugate pairs as indicated above.

For completeness, consider a model for an infinite but countable
number of distinct (discrete) waves and write

n(x.y.t)= 2‘. a,Exp (i 21!(’,, X+m,y+ft *“n)) : (2.13)
ns

Again the terms must occur in complex conjugate pairs for the wave
system to be real. This will be assumed to be the case in future
discussions.

A model for a wave system in the case where energy exists for con-
tinuous intervals of frequency and direction should be considered. In
particular, consider the general case of continuous direction from
0 to 2n radians and continuous frequency in the interval (-f,, + f,),
or even the interval (-», =), In theory the above model does not hold
for the continuous case. The power spectrum for the infinite but count-
able case would be a set of Dirac delta functions of amplitude a2
standing on the points (&, m,, f,) of a three-dimensional frequgncy
space. The continuous case produces a power spectrum, S, (%,m,f),
which is everywhere nonnegative and in general continuous over the
region of three-dimensional frequency space where power is assumed to
exist. A reasonable model for n(x,y,t) in the continuous case must be
determined. Consider a single wave element

ap Exp(i27n(Lnx + myy + £t + ap)). t(2.14)
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The energy or mean square in this element is a% Assume the ele-
ment is a part of a cgntlnuum of elements for -~ < f < +» and 0 < 6
< 2n. In this case aj; must be an infinitesimal energy associated with
the frequency differential, df, and space frequency differentials, dg,
and dm, which are related to the direction 6 of the wave element as
before. Let the power spectrum, S(2,m,f), be defined with units of
amplitude squared and divided by unit spacial frequency, 2, unit
spacial frequency, m, and unit -time frequency, f. The power spectrum
is then a gpectral density value at (2,m,f). In this case we must have
the infinitesimal energy, a%, defined by

an = S(hm.£) Al dm A4 (2.15)

The real valued, nonnegative function S(&,m,f) is a power (energy
density) spectrum of the standard type in three-dimensional frequency
space (,m,f). Intuitively, we can write an infinitesimal wave ele-
ment as

[Ev.b (i. 21 (l,‘x +myef Ly x,))]\ﬁ(!,.~ ffu) 4\ A‘“\,‘\;. (2.16)

where the positive square root is assumed. To arrive at a model of
n(x,y,t) for the continuous case, we need only form a triple "sum" of
the infinitesimals or, to be precise, the triple integral ﬂ(x,y,t)

j[(;?(xam(h*mv-ﬁt 4-0((91'\0) VS(Q m ;\ a\ A'M d‘ (2.17)

For different sets of values of the phase relation a(f,m,f), the
wave system, n(x,y,t), has a different shape, even when S(¢,m,f) is
fixed. In fact there is a wide range of possible shapes of n(x,y,t)
for a given S(%,m,f). The above development is more intuitive than
mathematically rigorous. It has been shown by Pierson (1955 - pp. 126-
129) that if 2ma(f,m,f) is a random function such that for fixed (%,m,f)
phase values of the form 2ma MOD 2m between 0 and 2w, are equally
probable and all phase values are independent, then Equation (2.17)
represents an ensemble (collection of all probable) n(x,y,t) for a
given S(2,m,f). The random process represented by the ensemble is then
'a stationary Gaussian process indexed by the three dimensions (x,y,t).
Detail discussions of the above can be found in St. Dennis and Pierson
(1953 - pp. 289-386) and Kinsman (1965 - pp. 368-386). The fact that
a particular sea-way can be considered as a realization of a stationary
three-dimensional Gaussian process has been verified. Refer to- Pierson
and Marks (1952).

The model in Equation (2.17) as a stationary random process will be
assumed in following discussion. ‘ :




3. A DIRECTIONAL WAVE SPECTRUM

The power spectrum S(%,m,f) is the directional wave spectrum of
n(x,y,t). If n(x,y,t) is to be real, every infinitesimal of the form
given in the continuous case above presumes the existence of its com-
plex conjugate. Let us consider the one-sided power spectral density,
S'(Zo,mo,fo), of a single real wave where 0 < f < ». For such a real
wave element of length A_, from a direction 60, 0 <6, < 2m, the value
S'(Rg,my,f5), = S(L5,mgp,£) + S(-Qo,-mo,-fo), where 2, = K, cos 6,

m =K _sin6,, and K, = 1/A,. If the above real wave came from a
direction (2m - 8), the power density would be S'(Qo,-mo,fo) = S(Zo,-mo,fo)
+ S(—Zo,nb,-fo).

Figure 2 illustrates a real wave of length A,, from a direction 6,
in two-dimensional spacial frequency (wave number) space.

Wave Direction

o | e—————

FIGURE 2. REAL WAVE IN WAVE NUMBER SPACE

If the wave number relation

K=2% Gz/yTa.nh (am Kh) (3.1)

holds, refer to Kinsman (1965 - p. 157) and Munk et al (1963 - p. 527),
where h = water depth, g = acceleration of gravity, and K = wave number
= 1/A, X being the wave length; then a relationship between f and (%,m)
is implied that requires a wave frequency f, to have a unique wave num-
ber k.. From this we have the general one-sided spectral form for waves
where f = f of ‘ '

!




S! (4,m,f)) = {zero where 22 + m? # Ko2
2

=K2,

a power density > 0 for 22 + M o

$'(4,m,f,) thus defines power density at f = f_ for wave energy over
0 <8 < Zw. Figure 3 1llustrates this case in wave number space.

S(4, m, £,)

S'(Lys myy £4) /

FIGURE 3. DIRECTIONAL WAVE SPECTRUM AT A FIXED FREQUENCY, f

We want to estimate the shape of S'(%,m,f ) above the circle 22 + m? =
K % in a directional wave train analysis. Remember, the S'(%,m,f )
above is restricted to £ > 0 and is, in fact, equal to

[ S(&qm.4) +« s (- !-M,-h)J
S(hwm, 8 = 8(- .-M.-f.)

where

(3.2)

if n(x,y,t) is to be real.

Let us see how S' (2,m,f) might be found: we have said that
n(x,y,t) can be assumed to be a stationary Gaussian process. One char-
‘acteristic of such a process is that for fixed values (%5, Yo» tg) of ¢

the he pro gesg*;mdicgs, n(Xos Yoo tO)is randOm variable WIth a Gaussxan

distribution; i.e.,
ot () dy

Prob (1 (%, %, t)< ) =




where u is the arithmetic mean of n and 02 is the variance. Intui-
tively n 1is as likely to be positive as negative, so let us assume that
Prob (n(xg, ¥o» to) < 0) = 1/2. Since n is Gaussian distributed, and
is thus symmetric about its mean, we have Prob(n(xg, Yo, to) < u) = 1/2
or that 4 = 0. For 02, we have (using expected value notation)

ot = E.[(’) ../,a)&} = E[’fr(xo',:'o.t'c\]

where we ave thinking of n as a random variable.

A Gausslan process 1is completély defined statistically if we know
the {orm of the mean

E(n(x,y,t)) and the covariances

E {h (x,9,¢) - & Qz(x,ﬁ,t)')][ﬂ(xﬁx,s +Y, t+T)-
E(p(xeX,u+Y, ¢t *T))]z .

where X, Y, and T are space and time separations, respectively. . Refer
to Parzen (1962 ~ pages 88-89). We have assumed E(n(x,y,t)) = u = 0 and
that the process is stationary (only weakly stationary is necessary).
Hence, by definition of weak stationarity, we have for each (x,y,t),

and vet independent of the particular x,y,t values, the covariance form

R (X.Y,T)E E[n(x,‘s,f) V\(x +X, 4+, t+T)] . (3.3)

All of the properties of the stationary Gaussian process n(x,y,t) are
implicit in R(X,Y,T), just as a knowledge of u and 0“ for a single
Gaussian random variable completely defines such a random variable.
Here it is important to understand that we are discussing expected
values across all possible realizations at a point (x,y,t); i.e.,
across the ensemble of all possible sea wave shapes at (x,y,t) for a
given S(¢,m,f).

There is a simple and unique relationship between R(x,y,t) and

S(2,m,f). Consider a single real wave element (from Equation (2.16) and
(3.2)) as a random process and write n(x,y,t) = [EXP(i2n(ax+tmy+ft+a))

rExp(-iet({namy + 8t + ))]EAmIT ATdm dl .




Form the covariance function

RRYT) = E[g(n9.) . (54X 5+, 1+T)]
=E[_Ex\a (ien Q25+ X)+ m(2y+Y)+ F (@t +T) +2)
+ Enp(~iew(d(exaX)am(2y+Y)+f (et+T)+2x)
+ Exp(i 2N ({X+ MY +£T))

+ Exp (-i2n (1X+ mY+ £T))] S(tm.f) b dm 4f

where E is the expected value over the ensemble for any fixed X,¥,t

Note that -
ﬁlm Fdldmas

is a constant with respect to the expected value.

Consider the following problém. Let u be a random variable with
uniform probability density function

’ agfBre” & ‘ -
‘F(W=/‘ {K 60 & UL 2N radians

0 else where,

Define a random variable Z = el¥, The expected value of Z is defined

Considering the random variable nature of the phase 2ra as described
following Equation (2.17) at the end of Section 2, and applying the above
notion to the cross product terms of R(X,Y,T) we obtain

R(XYT) [EsP (LZ#(!X+MY4{T)) +
Exp (- i 20 (1K + mY + £T))| S(Amf)dt aAm d§.
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For a real wave element we have, where S(f,m,f) = S(-&,-m,-f), see

Equation (3.2), R(X,Y,T) =ExP (i A ] (ﬂx +mY«+ {T) S (lm,{)dﬂ dwm A‘

+ Exp (—- L 2.1\'(9)(4- mY + 'fT)) S(-4-m,- f) dldmd#

which is simply the sum of the covariance functions of two complex
wave elements which are conjugate pairs. It also follows that
R(X,Y,T) is real valued.

Reverting to the complex wave element form, and noting that the
expected ensemble value of cross products between different wave ele-
ments is zero in a manner similar to the case of cross products shown
above, we obtain the composite general relationship

R(X.Y.T\-‘-Hr Exp(i2W (X +mY s §T) SUm f)dtdnds -9

-0 ~03 ~ 9
We have demonstrated, but not rigorously proven, that the covari-
ance function R(X,Y,T) is the three-dimensional Fourier transform of
the directional power spectrum S(%,m,f).

We cannot hope to be able to estimate R(X,Y,T) for continuous
values of X, Y, and T. However, there is a way around this problem,

we can write the above as
R(XY.T) =

os A

je:@ (i2%w$T) “E_*\u (iaw (PX*MY)S(l.ﬁ.‘)A!&n &t (35

~ad -

which is in the form of a single dimension (variable f) Fourier trans-
form of the term in brackets [ }'s. Note this term is not a function
of T. It depends only on the value of (X,Y). Further, by Fourier
transform pairs we can write this expression as

[ ]'5 = (\;\(X',‘(I)Exp(-iaﬂf'l“)d'l‘ (3.6)

In general, assuming that the term in [ ]'s is complex, we can write

[CXYF) -1 Q (XY f)] =
-SR(X}{‘T) Exp (~i2nET)AT | (3.7

11




To find [C(X,Y,f) - 1Q(X,Y,f)] we need only know R(X,Y,T) for continuous
T for the given value of X,Y). Further, we have just stated that

[cRyf)-ie@xYH)]=[]s =
((Sl'."‘.{\ E!P('I.Z’“ (lx-\- MY)) dddm (3.8)

This is in the form of a Fourier transform; thus, we can write from
transform pairs

S{h.m #) = ff [ XY, £)=10(XY £)]Exp (~i2m (1Xe mY))dXAY

(3.9)

As has been stated, we cannot hope to have a continuous set of values
of (X,Y). The solution is to find R(X,Y,T) for continuous T and

selected values of (X,Y), and then employ the above to estimate S(%,m,f).
This 1s described in the next section.

4. CROSS SPECTRAL MATRIX OF AN ARRAY

Let us look at n(x,y,t) at two fixed points in space, say
(%0, ¥o) and (x3, y7). This would give two stationary Gaussian pro-
cesses indexed on time alone because (x5, y,) and (x3, y1) are fixed.
Thus, we may write

Relt) = R(X, 4o€) and ()= R (%,4.t)

If X = (xl - xo) and Y = (yl - ¥o) Then we can say, since n(x,y,t) is
assumed weakly stationary (see Equation (3.3)), that

RXY.T) = E[(t)- 1, (¢+T)]

where the expected value is over the ensemble for some specific value

of t, where - » < t < », Let us extend this idea by a change of notation
and let N(X,Y,t) be a two-dimensional (vector) process, double-indexed

on time; 1.e., let N be a vector function

N(XY.t) = (7oft: 7 (9)) = N (¢)

for ..cot.t(qo | (4.1)

12




We can then write a generalized covariance function (assumed to
be finite) as the matrix equation

R(T) = E[NTe) N(e+T)]

= [ECeEnee) E(1) 1 (¢4 T))
E(q,(1) qle+T) E(n) nle +T))

[ R(0,0,7) R(XY,T)
T L RI-XAY,TY R(0,0,T) 4.2)
Now R(-T) is

R (0,0,-7T) R(X,Y, -T)
RET) =
eT) R (-XX-T) R(0,0,-T)
and R(-T) transpose is

R(0,0,-T) R(-X,-Y,-T)

T .
RCT)
RO($Y9—T) R( o, O, -T\ (4.3)
We have by Equation (3.3) and stationarity that
R(~X,~Y,-T) = E(q(x,,4,, +T) 7 (F:,%.,t))
= E (7 (4,80, 6) 0 1%, 8,2+ T)) = R(XY,T)
It then follows that -
R(T) = R (-T) 4.5)

13




From Equation (3.7),

lee P (XY.f) = [C (R Y1) - iQ(x,Y.-f)]

and we get -
PR, ) = [ RXY.T) Exp(-izndT)dT

Now R(-X,-Y,T) = R(X,Y,-T) by Equation (4.5). Thus, we have from
Equation (3.4)

R (XY,-T) = fﬁ“ap(i 210 (A + m Y+ £ (-T))S (Sm.6)dbdmdt

or, by the same procedure, that Equation (3.6) was obtained from
Equation (3.4), we have

PYXY. ) = [ RIXY, T exp(i2w4 T)AT 4.6)

Now, since R(X,Y,-T) is real and Fourier transform pairs are unique,
we must have from Equation (4.6) that

f‘R (X.Y, -T) Exp(-i2w$T) 4T = P (XY, £)

a parallel form of Equation (3.6). Therefore, the Fourier transform of
R(-X,-Y,T) = R(X,Y,-T) is the complex conjugate of the transform of
R(X,Y,T); i.e., (see Equation (3.7))

F-X,-Y, 6) =[FX.Y 0] = PX,Y.9)

In general, we have that the Fourier transform of R(T) = RT(—T) is

Plo,o.)  PIX.Y.9)
P(X»Y~f) '?(O,O.f) | (4.7)

Note: P*(0,0,f) = P(0,0,f) is real.

14




By definition it follows that

C(X,Y,f) = Re[P(X,Y,f)]

Q(X,.Y9f) Im[P(X,Y’f)]

where =» < f < o ,

The function C(X,Y,f) is called the cospectrum and Q(X,Y,f) is called
the quadrature spectrum. Both are spectral density functionms.

Explicitly, we can think of (x4, y,) and (%7, yj) as being the
location of elements of a probe-array with space separation (X,Y).

The first step to find (or estimate) S(%,m,f) (see Equation (3.9))
is to find P(X,Y,f) related to a pair of array elements. This is a
problem of estimating the cospectrum and quadrature spectrum of a two-
dimensional (vector) stationary Gaussian process. Goodman (Mar 1967 -
Chapter 3) has an excellent treatment of this subject, which we will
discuss. Kinsman (1965 - Chapters 7-9) also discusses the subject.
The essence of the problem is that if P(X,Y,f) is continuous and negli-
gible for |f| > f,, then R(X,Y,T) can be obtained by a time average over
a particular realization N(X,Y,t) instead of having to average (find the
expected value) over the ensemble. This says that we can find R(X,Y,T)
by obtaining two time series (realizations) r,(t) and rl(t) measured
over time at only two points; e.g., (%o, ¥Vo) and (x1, y1) where
(x1 - %) =X and (y1 - yo) = Y. The relationship between (rb(t), rl(t))
and R(X,Y,T) —=» < T < = is

' | s,

RICY.TY= Lt o ) () en (e+T) dt
' ° I-t7€ ‘

(4.8)

where ro(t) is a realization measured over time at (x_, y ) and fl(t)

. *"0* ‘o
is measured at (x3, y1). We can simplify the notation by an expression
for a time average given by

R(X,Y,T) = Ry1(T) = To(t)ry (e+D).

\
It follows from Equation (3.7) that:C(X,Y,f) = Co1(f) =

j Ro1 (T) cos(2mfT)dt,

-0
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and

©

Q(X,Y,f) = Qoi(f) = / Ro1(T) Sin(2wfT)dT. | (4.9)

-

We also have (see Equations (4.2) and (4.7)) COO(f) = Cq1(f) = POO(f) =
P11(£),

Qoo(f) = Qu1(f) =
The phase of POl(f) is given by

Qo1(H)

Dy (4.11)
Co1(D)

QOl(f) = Arctan

This is the expected phase lead of the signal at (x
signal at (x3, yj) for f where - @ < f < =,

0? yo) over the

For an array of N deEectors located at (xl, yl), (xz, y2), (%3, Y3 )
o oo (xys yy) we can find N spectra [P = 1, N. This gives
a unique spectrum Pll (P11 = . ; and since Pij = Pji (see
Equation (4.6) and 4.7))

we have

N 1;—1) , , (4.12)

unique cross spectra or a total of [N(N-1) + 2]/2 unique spectra. Thus,
for real n(x,y,t) we have Pi (£) = P¥,(f) and P, (f) = P} (-f) allowing

us to define the information about P{* Y, ) obtalnable fram an array by
a cross spectral matrix :

[P.5) Calf) - - - Cond)
Q.1 Pza(‘) -0 Can(®) wHERE 0% § & oo

\Q.;(*) . PNN.({) (4.13)
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This information can be used together with Equation (3.9) to obtain an
approximation to S(2,m,f). Numerical details for finding the spectral
matrix are given in Bennett, et al (June 1964).

It should be pointed out that negative frequencies are still con-
sidered in the relationships being discussed. We do not know P*(X,Y,f)

for continuous values of (X,Y). We do know from the spectral matrix
the values of

PN Yoy 6) Fer L= dm L

where Xij (xj - xi)

il

V3= Oy -y

We also have from Equation (4.7) that
»* .
PEXYet) = -P(X‘-J.,Y‘.j,&) , (4.14)

From Equation (3.9) we get

S(tm.§) = ﬂ”{P'(x,Y,#) cos [2W(AX+mY)]

-—od =~

- =i PUX.Y, ) siN [_a1f(!X+mY)]}¢lXAY

or, since S(L;m,f) is real

@

é(i,m,f) = Sr{c (XY §) cos[2m(AX+mY)]

-0 —&0

= Q(x.Y.H)sin[en(ix+ mY)]} dxdy

"(4.15)

Let us consider treating the points of (X,Y) where we know C(X,Y,f) and
Q(X,Y,f) as weighted Dirac delta functions; e.g., at (x12’ le) we get

C(x,Y,§)= b, L(XY,.8) d (X-Xi)d (Y- Yio) .

17




Reverting to the Cjij, Qij notation of Equation (4.13), we have, where

in'- -Xy4 and Y34 = -Y43, C = Cj4 and Q3 = -Qi3. The numerical
form of Equation” (4.15) then ecomes

S(%,m,£) = by, Cy4(f) + 2 i ibu{c (f) Cos[z‘n Ix+mY; )]

=\ J’L+l_
- Qij (f) s [_a" (lxi‘ """"Yij)]} (4.16)

Choice of by 4 values is arbitrary. A reasonable choice is b, j
[N(N-1) + 1]‘ for all (i,j) (refer to following section). We now have

a basis for an approximation of S(2,m,f). Before exploiting this result,
we need a few side results.

5. SPECIAL CROSS SPECTRAL MATRICES

Assume that we have a real sea wave .of freqhency f_ > 0 moving
from direction 0, where &, = K,Cos6, and m = K,Sin 64, Ko being the
wave number from Equation (3.1). We can write the wave as

n(x,4,¢) = Acos(2m (lex +m ¥ +f. t +)) (5.1)

Since the root-mean-square (rms) value of a cosine wave is A/Y2, we have

for the two-sided (-» < f < ») directional power spectrum of the wave in
Equation (5.1)

S(A,m,6) = A [§(8-2)§n-m.) (3-4) +
.. +£(1+Q.)S(m+m.)§(_{+¥Q)] (5._2)1

or in polar form where K = Vlz +m2; 8 = arctan(%b

S(x.0.6)= & [§(o-6.) {(§-£)+

+,_.§(e o-m)d (§+4.) ]S (K- K.)

18




From Equations (3.8) and (5.2) we have for a single wave of frequency
fo > 0 from a direction 60 that the two-sided

P Y = é[_exp (iex (4. X+ m, Y))J({ £)+
+ exe (ian(- L% mY))S (£ +4)]

or wheae 13;’ () = C,6) —-:Qij(s) thot
Gt = G, = 7
Cyt)= G () = K cos (em(L X0 m,Y,)

Qj(f) = '_Qu(-&.) = - %?-.sm(z‘n (L X+ m Y,) (5.3)

describe the elements for the spectral matrix of a single wave. Recall

that, in general, C (f) i(f) and Q14 (f) = -Q4 (lf) Substituting
into Equation (4.16§ we get where bij [N(N—1)+1i = 1/M (5.4)

and £, > 0 is assumed l {
S(tmf)= = A i +
az Z [cos (@n (L X mY ) cos 2mUX;rm X)) +

+sIN(2m (L X+ m X)) SIN (2 (A X m‘(,))] oR
S(LM )=

fl-ﬁ-aiiCOS(Z‘n[X‘(Q Q)+ J(m-m.)])} (5.5)

o=
The choice of bij =1/M = [N(N—1)+1]"1 and observing that 1 N(“'-Q

‘.' 3 LY 2
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gives the convenient result (Note: For —fo < 0 we would use (—Zo,—mo)
in place of (%,,my))

S (ﬂo,m,,ﬁ) =S(-k,-m )
—_‘-_Aiv: 5\ + N(N—\)}

which agrees with the values of Equation (5.2) at the points (2,,m ,f.)
and (-%,, ~m,,—f ). Note that there is not general agreement elsewhere.
In fact, Equation (4.16) may (and does) give negative values for the
approximation of S(%,m,f). This is a problem of probe array design and
is directly related to the directional resolving power of a probe array.
This problem is discussed later in another section.

Consider the case of a single frequency, f, > 0, real sea with

equal wave energy from all directions; i.e., isotropic waves. In this
case, assuming the wave equation (Equation (3.1)) holds, we have

S(Q‘m,{)::. [K J(( 2+ mz')-(Q.z+m}))][J(f—f.)+J(++f.)]
or whers K= 1+ mt, K=+ , ANo 8 = ARcTaAw (%)

S(K,8,8)= A (K=K (F-f) +d(f+5.)]

(5.6)

as the two-sided directional power spectrum for such an isotropic wave.

Since £ = Kcos6 and m = Ksin6, Equation (3.8) can be expressed in
polar coordinate form as :

W oo

P () = S KS(K 6,8 exe (i 27K (X cose + Y SIN 9))\'\&“&9(5 7

2
Letting A] ( Xu * Y




and (.. = ARCTAN (_\_(M.)
AJ N
we can write

N oo
(f SS (K,e,{)sxp(kzwKDUCos(e-e‘j»dede 5.8)

N o
Using Equation (5.6) for S(K,0,f) we get

f) KK‘J ExP Lam K,D‘JCOS(G )de

= AK. Jcos (27 K Ducos (6—9;)de +
+ LKK.jsm (27 K, D, cos (e—¢u))d9

. -“ v

(5.9)

Now, departing from the abo?e development, consider the following
integral where

z=27K, D, Y —¢‘J
x
Scos(ne) cos (% cos(e-m))d.e
-7

Let ¢ = 8 = ¢ and we get

Y -

5"0:(7‘¢ +ny) cos (2 cos ¢)

“-
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Expanding cos(nf + ny) we get
-9

cos my jcos n¢ cos(zcosd)do
-N=-4
-y

~SINMY | Sinnd cos(z cos d)do .
Sn-w

We have (1 =~ ¢) -~ (-7 =p) = 27 so that the integrands are over 27
allowing us to write the above as

a
cos qJ‘(cos n ¢ cos(zcos ¢)d¢
-

144
—SIN'ntpjsm n ¢ cos(zcos ¢) do .
-

From Ryzhik ‘and Gradshteyn (1965 - page 402) we have (since sine is odd
and cosine is even) the result

. ]

S:os (ne) Cos(x cos (e- tp))de

= coanxLG cos(ni'—'\ Jn(l\] o

(5.10)
In a similar way we get
.
Sc.os (ne) sin(z cos(0-yp)de
-1
= cos n q:[a'n SIN (J:.g[.) J"(Z)] , (5.11)
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where J,(2) is a Bessel function of the first kind of integer order n.

Returning to Equation (5.9), the above results give, for n = 0 where
f, > 0, the result

P (ef) = A2mk, J.(enk.Dy) -

Since the above is real

Citf) = 2wKA
C;lt%) = e KAJ (2w K, D) -
Qﬁ(i‘fa) = 0 . 5.12)

describe the elements for the spectral matrix of a single frequency
isotropic sea. .

The above two special cases for sea waves are the extremes of
directionality of real sea waves of frequency f, > 0. These results
will have important applications later.

6. A MEASURE OF ARRAY DIRECTIONAL RESOLVING POWER

From Equation (3.9) we have the Fourier transform

S(tom.f)= .frp"(x X, )exe (~i2m (I x+mY))dxdy

-0 ~ 0O

In practice we use a probe array with elements at (x1, yj)..., (xg, yk)
to obtain P*(X,Y,f) at the separation points (0.0), (X;,, le),
(—Xlz,-le)..., (Xk_l’k: Yk—l’k)’(—xk‘l,k’ _Yk—l,k)

We do not then know P*(X,Y,f) but the product

[P*(X,Y,f) g(X,Y)] (6.2)
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where g(X,Y) is a set of Dirac lelta functions standing on the separa-
tion points of the probe array. and zero elsewhere.

Thus, we have the estimate

8 (4mf)= [([Px v, 0 g x )] exe (- emlts i) dxdy

—-00 = 00

Let

(6.3)

G(2,m) -_-..J ;(X,Y) exe (Cien(iX+mY)) dxdyY

Using this and Equation (3.8) we have for a given (245,my,£y) that

S (Lm£) =?(USS (Lm.£)exe(iem QX+MY))0\Q d m]g(x Y)

exp (L2 (Lox+mY))dxdyY

fﬂ S(8,m L) g{x,Y) exe(-iew(X (=1)+Y (m.- m)))&x&%allclm

-0t =ih -vﬁ -t

I{S(ﬂ m. {)[ 3{x,¥ EXP( La‘n 9 Q)ﬂ-Y(m,-M)))dde]&Nm

= IYS(Q.M.'E)G 0,-%, m,-m)didm
- =00 (64)

As expected, S$(2,m,f) is a two-dimensional convolution of the true
directional spectrum S(z,mzf) with G(2,m) the Fourier transform of
2(X.¥). We see then that S(&,m,f) is a weighted average of S(%,m,f)
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and that G(%,m) is a measure of the directional resolving power of the

assumed probe array. By the nature of g(X,Y) we have from Equation
(6.3) '

G(tm)= 1+222cos(2n (Ix+ m YY) (6.5)

wley

If we assume that the wave eq atioa (Eﬁgation (3.1)) holds, we find
that S(z,m,fo) is zero when 2 + m° # , the wave number for f.
From this we have for a given (2omo) that the directional resolving
power, DRP, is

0 oo

DRP (A, m L) = 5 IJ((lt-* m‘)'— K:) G(L-8,m.-m)didm

< 2 K
et l=K.,cos0 y M= KsSINO,WHICH IMPLIES Pem =K,

and we get, for energy coming from a direction 9, at frequency f, as a
function of 0 < & < 27, that

DRP (9 | 6.,f.) = G(K. (co$ 8.—Cos0), K, (sin6.—stIN e)) .
From Equation (6.5) we get
DRP (6]6.,8)= 1*‘2229“[2‘“ (x,K. (cos0.—cos @)+, ;K.
| o (51N O, — Sin 6))]

=1+ aizcos[zﬂ ((f -K.cos €)X, s+ (n,— Ka SIN 9)‘(1)]

L= -,Q.'H

Nore Twat DRP 9,9{,) N(N-1)+1 (6.6)

Compare Equation (6.6) and (5.5). Except for the amplitude term, AZ/4M,
in Equation (5.5) the equations give identical results. The choice of
bij = [N(N-1) + 1]—l = 1/M is again found convenient. '
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7. DIRECTIONAL ANALYSIS FROM THE CROSS SPECTRAL MATRIX

First, we consider a fundamental approach. We have for a pair of
detectors I and J located at (x;,y;) and (xi,yj) respectively, the

cross spectral matrix, P (f) = Cy4 (£) + 1Q4,(f) and more impor-
tantly ¢ij(f) the phase lead of 1 over J: givAn by,

@ (f) = ARCTAN E:%J

/4

(7.1)

The actual phase lead may differ from this value»sipdé the true phase
lead 6 is some one of the values

Q,(¢) +haw

where
"\.::0, il’i a'

Consider a single wave of frequency f, with corresponding wave
length A, and wave number K, = 1/),, and find the direction the wave
must travel; i.e., fit a single wave to the spectral matrix results for
the detectors I and J.

Let D44 be the distance between I and J. The distance between
I and J in wave lengths is KoDjj. In radians this is 27KyDj4. From
this relation we get

-2 K. Dy P 2K, Dy
or that only values of h such that

—2u K. Dys @ F) +hew £ enK. Dy (7.2)

give physically acceptable candidates for the value of ¢. If Djj < Ao/2
only one h value is valid. If XA /2 < Djj < Ao at most two values of R
are valid, etc.

The problem is how to find the true directiomn, 6,5, of a single

wave given the above possible value(s) of ¢. Consider a given value
of ¢ in terms of wave length units and we obtain
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L:i-%h,:_g.

0 oK, ° (7.3)

Figure 4 illustrates a case for ¢ > 0 (and thus Ly, > 0). From the
figure we have, where the true direction is 6, and true phase is ¢,
that

(7.4)
ol =
WHERE SiN ™ K.Di:‘ L
= ARCSI _Q__ = ARCSIN[ - ]
oR X =A N[z,“ X, Dis] D;j

(Xi; YQ) ‘ \ _ \Kﬂ

FIGURE 4., WAVE DIRECTION ANALYSIS

27




Recall that sin(a) = sin(+m-a). Thus for a given ¢ > 0 we get, since a
must be obtained from an arcsin relationship, two possible values of
wave direction, the true value 6, and its image

O=[y+T]+ [-1-]

= y-F - = - [

(7.5)

This is illustrated in Figure 5. In actual practice we do not know the

true direction, thus a given value of ¢ > 0 gives the direction as

= X 4+t
6, “Pij’h[a"' ]
where 0 < a < /2 is obtained from the principle value of "the arcsin.
If ¢ < 0, then I actually lags J by l¢l > 0 and Lé = Lo/Dij < 0, so
that arcsin (Lg) gives -m/2 < o < 0.

= i >0
° = 21K,
True Wave
Direction
~— eo
\ \(_\_‘

A -

1 \‘//6' (False Direction) ~~

FIGURE 5. DIRECTION ANALYSIS FROM A PAIR OF ARRAY ELEMENTS




The implied directions, for ¢ < 0, are directly opposite from those
for ¢ > 0 so that for a given value of ¢ < 0 we get directions (o < 0)

and 6 = ‘Pij"'% - O

or 8,= %34.121 + ok
— e
6 = ‘P‘Ji{a +oc.]
as before. ‘

Thus, where the principle value of arcsin is assumed, we get a set of
possible directions

e, = ijt[l?."“'oﬂ

where
004 hew
oG, = ARCSIN | Sk, D55 (7.6)
h being constrained by

| @:; )+ hew 4
RIEISY .

N

An examble of this type analysis, for an array pair, is illustrated
in Figure 6. Thus several estimates of 6, are available (at least two).

The estimates of true direction, 6,, often vary from one array
element pair to another, making the selection of a true 6, value diffi-
cult. The selection i8 also hindered because half of the estimates of
0, are of the image type; i.e., false estimates.

While the above directional method leaves something to be desired,
it does illustrate the basic directional information produced by an
array of detectors.

A better method, suggested in Munk et al (April 1963), of using the
spectral matrix directional information to fit a single wave at each
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FIGURE 6. DIRECTIONAL ESTIMATES FOR A PAIR OF ARRAY ELEMENTS

frequency is given below. It is based on Equation (4.16) in the
form

Shm,f) = 'rli (_C,(H +2 i i [Cas(ﬂc.os(?-“ (L 3+ mYiy))

—Q,H)sIN (2m(4 K ""Yw».]]

a4k

where M = [N(N-1) + 1], C.G) = -bll- i C-“)
=i

and N = number of array elements.
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Recall that for a single real wave of frequency f, > 0 and known

direction 6, Cij(fo)’ Qij(fo) are known (see Equation (5.3)). These
values give

Slk.6,.¢) = §(K, B ~-6)=4 .

When a single, well-directed swell is expected, it is reasonable to
assume a single wave for a glven frequency exists, and to select 8, and
Ay = A2/4 such that the least square error between the theoretical
cross spectral matrix for a single wave (see Equations (5.1) and (5.3))
and an observed cross spectral matrix is a minimum. Accordingly, using
the expressions of Equation (5.3) and an observed cross spectral matrix
for a given frequency, f,, we can form the squared error

H= (C, - A)?

.\ z_f_‘:li[c“— A, cos (2t (L X;5+ mfﬁj)ﬂz

iz1 ysisl

N-I N

+23.), [Q‘-j-r Acsin (2m (L X+ %Y;Q)]a

izt jai+l

N
AR
noTe: A=A 1 G -'\4-2 oy

1= (7.8)

Expanding and collecting terms we get

H=Cle ziz_:;'(ds +Q5) + [N(&-l) +1] Al

43

—~2A, [Co + a‘:"_‘-,li Cii cos(en(d X‘.'j+ M.Yu»

'ETIRTITY
N~ N 1

or using results in Equation (7.7)
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YRty

N-/ ,
= Clead L(Ch+ 0l «ufui+ (A2 AS(md)
To find A_ that minimizes H?'considgr”

(7.11)

:T‘%. = aiN(N-AI)-i- 1] [A. - Sl m, f)] =0

This requires that A, be of the form A, = S(Q,m,fo) and a resulting
value of H of the form

H=C +a§i(c;+oﬁ) _[N(N-|)+|j[5(2.m.¥o)]z

i3 Jzien J (7.12)

Since Cg, ng, and Qi- are all nonnegative, a minimum H results when
S(2,m,f,) is”a maximum. A choice of %, and m, that maximizes S(%,m,f,)
implies a 8, = arctan mo/zo which is optimum., Remember that we are
assuming Kg = zg + Mg holds, along with the wave equation. The results
then for each f, is a two-sided energy spectrum estimate A (£5565) .
Appendix B contains a listing of a FORTRAN II program for ginding
A,(£f,,0,), the least square wave fit, from a set of spectral matrices
obtained from the task SWOC data collection and analysis system
described in Bennett et al (June 1964). - '

Examples of least square single-wave train fit analysis from
Bennett (March 1968) are shown in Figure 7.

A more complete collection of the directional spectra calculated
from data collected off Panama City, Florida, is given in Appendix A,
and in“Bennetti(N%vember 1967), ‘and Bennett and Austin (September 1968),
an unpublished Laboratory.Technical Note TN160.

We would actually like a contiﬁuoﬁSjespimate of s'(2,m,f). Con-
sider then a third method. From Equationﬁt3§$)'we have for a pair of

detectors, as illustrated in Figure 8, that *.a%é
P, 6) = [ [s(tm ) exe lian(Axam¥)] dldm
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. FIGURE 8. DETECTOR GEOMETRY .

Let 2 = K cosf and m = K sinf

D = /X° + Y2 p o= Arctén%

and
or

X =D cosy and Y = D sin .

Using. the above changes of variable, we get

P (x,y.,§) =j SZ(K 6+) exp[im (KDcos é‘cos P+KOSINOSIN 4’)]
-x "o : , K&Kde

(7.13)

M a0
P*(x,Y,f\:jjs (K.8,f) exp[iz« KD cos (8- pYKdrde
-x O l
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We have from Equation (3.2). that
S(k,e.f) = S(K,e-m,-+£)
If we think in terms of f5 > 0

’
s (Kef)=123 (K,B,f,) (7.14)
We are assuming that the wave number relation of Equation (3.1) holds.

Thus Figure 3 is applicable, and we can write the one-sided spectral
density as ' .

8'(k,6,f) =2 d(e,&) d (k-K)

where - & (K—K,) = {; :: :’

This allows us to write, —eo { {',( 4%

Prx %) = | [a(ot)dk-Kk)enelienkpeos(e- yikdxde

[
~f
PUXYS)= fa. (e,£) axp[i 2MKD c.os(e-lpi}K,o\B
-1t (7.15)
We have reduced the prcblem to findiné [a(e,f, * kol.

From Equation (7.15) we see that ¥

P*o,0,§Y = P(f) = {a(e.f)k,d0

where P(fy,) is the power spectral density of frequency fo. For better
comparison of cases where P(f;) = P(£ ), |f1| # foL it is convenient
to express a(6,f,) in a normalized form

AC6,£5) = a(8,f,)K,
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where we get

=
P(£) = SA(Q’{')&Q (7.16)
=

Thus if the energy distribution as a function of direction is the same
for P(f1) = P(f,) then we also get

A(8,£1) = A(8,£,).
Consider now (aséuming A(6,f) can be so expressed) a Fourier series

expansion of A(6,f) for fixed f. Clearly it is periodic in 6 with
period 2m., Thus for any given f = f, we can write A(6,f) as

Z[O‘.ﬂcos X -g-,\on SIN ne] o gan

Nat{

Substituting this expansion into Equation (7.15) we get
w v

P*(X,Y‘{) = %J jﬁxP L2WKD cos(a-ﬂcle + ﬂZ.[Q'” jcos né
-

-N g

EXP 12N KD cos (6-¥) do +h Ssm ne EXP L2W KD cos(e-w)de]

it
4

or P*(x.Y f) [ Scos (211 KD cas(e- q»)) de +Z (0.,, gcosm cos(w kD

n=i

cos (o0~ w))ale +b gsm N6 cos(2% KD cos(6- w))cle)]
+ é[g-'-‘SSN (?.1f KD co$ (e-\v)d.e +

I'*

+z (0.,, Scos N6 SIN(2WKD Cos(e- #»de +

"

b“j:m 76 SiN (3,? KD cos(e-iy))cle):{ ' (7.18)
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Thus we can express P#(X,Y,f) as complex infinite series with unknown
coefficients ag, a,, a,,... and b,, by, ... and constants defined
by the integrals (iet % = 21KD; n'= 0, 1, 2, ...) of the form

L

chvos ne cos (i Cos (o -11)) de ' (7.19)

o

Sim ne cos(2cos(8-y))ds (7.20)

; | ;

Sgos ne SIN(z CoS (a-ur))d.e (7.21)
and

jim ne S\N(z COS(O-W)H,O . (7.22)

Consider Equation (7.19) where ¢ = (6-y) and d¢ = d6, ¥ being a constant.
We then have on changing variables

- '
gcos(n¢+nw) cos(z cos §)d ¢
-y Ny |
=cos N tpjcos ngcos(zcos 0))6.0 (7.23)
-y
—~SINNY {;& nq cos(x cos 0)d¢
-~y |

Since the integrands in Equation (7.23) are both of period 2m and the
interval [-m-y, m-¢] 18 of length 21 we can write the equivalent of

Equation (7.23) as

s n wfgos nd cos(? cos&) d¢

-1
— SIN nwhm nd)cos(zws&)d@ (7.24)
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From Ryzhik and Gradshteyn (1965 - page 402) and noting that the second
integrand is odd we get Equation (7.23) equivalent to

cos g (2n cos () J (3) ]

where J (Z) is the Bessel function of the first kind. Employing a simi-
lar procedure for Equations (7.20), (7.21), and (7.22) we get

P*(xv,4) = efam J, (en KD)] "
Z[ﬂhcos ny an COS(:"%')J,, (2% KD) + by SiNny 2

cos () Jp (o Kn)] |
+3Z[Q,.cosw zwsm(yi_)J (2 KD)

nst
+ b SINNn Y 2% S\N("m 2‘“ K D)] (7.26)
Now n\ _ (o n odd
and ny 0 "7l evewn
~ sw(a) {(t)"’é" n  odd

Thus we get P X Y, F) [2.‘“ J (@n KD)] M
e L aconp b ]
z ?.'ﬂJ (Z‘NKO)(")%< Cos h‘}""bhsm”@}

(7.27)
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From a spectral matrix of the form in Equation (4.13), M = N(N-1) +1
different equations can be set up using Equation (7.27). This allows
us to get a system of equations for any m of the unknown coefficients
ag, a1, a2, ... 3 by, by, b3, ... while assuming the rest of the
coefficients are negligible. We can then solve for the m desired
coefficient values. This has not worked well in practice for two
reasons. The inverse of the matrix of constants obtalned i1s sparse
and often 11l-conditioned. Further, 1f the wave energy 1is from a nar-
row beam width (30 degrees or less), the first 100 harmonics in the
Fourier series expansion can be significant. There is perhaps a

more efficient orthogonal set of functions than the sines and cosines
of the standard Fourier expansion. Search for such an orthogonal set
should prove fruitful. One might start with Walsh or Haar functions.
See Hammond and Johnson (February 1960).

8. SUMMARY

It 1s believed that the least square method of using the informa-
tion in a gpectral matrix 1is the best method presently available.
Examples of such analysis can be found in several of the papers in the
bibliography. A collection of ocean-wave induced, bottom pressure
directional spectra from these papers is given in Appendix A.

An iterative extension of the least square method can be found in
an excellent paper by Munk et al (April 1963). Some details of this
method are given in Appendix C along with an example result and a
FORTRAN program for the method,

There is merit to using the coherency,

R,;' Hj = \ P":" (.Fl)—-: ,
’ (Pii Fi3)?

to form the weights bij in Equation (4.16). One idea being explored is

N
z R’::)'

[}
Ll g=L+1

A% -

I+ 2

R
=
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APPENDIX A

A COLLECTION OF DIRECTIONAL OCEAN WAVE
BOTTOM PRESSURE POWER SPECTRA

This appendix is a collection of the results of a least square,
directional, single-wave train analysis.of the cross power spectral
matrix resulting from the analysis of ocean bottom pressure data. The
data were collected at Stages I and II offshore from Panama City,
Florida, during 1965. The data collection system and the estimation of
the cross power spectral matrix associated with a set of data are
described in Bennett, et al (June 1964). Augmented pentagonal arrays,
containing six pressure transducers each, were located seaward of each
of the stages. Stage I is 11 miles offshore in approximately 103 feet

of water, and Stage II is 2 miles offshore in approximately 63 feet of
water.

Certain parameter values are pertinent to the directional analyses
presented: the number of data points in each pressure data set is
N = 1800; the sampling rate is once .per second, At = 1 second. On the
cylindrical polar plots frequency is the radial variable and compass
bearing the angular variable. The vertical axis is logjg of power
spectral density in inches“-seconds of water pressure. The frequency
axis range is O to 0.3 Hz in 0.05 Hz increments. This is illustrated
in Figure 7 of the report. In each plot title, the date, time, and
location (stage) is indicated. The value WD is wind direction in com-
pass degrees, and WS is wind speed in knots. Appendix B gives a listing
of the FORTRAN II computer program used to produce the plots. :




8 8
s
8 8
8 1
=

- ORTEDR/UL/78S TIRENIN-1228 STRGEL  WDI0S ORTEDE/01/65 TIME1Z27-1253 STRGEL WDI1T0
8 o
= 5
<
8 g
L ';-
8] 8
~ -
~
8

. DATE06/04/65 TIME!418-1449 STAGE! Wo282




ORTEOR/DN/65 TIMEIG0B-163 STRGEL  WO3ED - OATEDE/OU/65 TIMEIGNO-1708 STRGET  WOXYS

.

" 'I
3 & { pa - e
+ _." o
T ( e e
{ \ e ot
: o O T -~
\ e
\ S
i " g

DATEOE/ON/65 TINEI7TOB-173L STRGET  WOJIS DATEDE/ON/65 TINEANCY-20%5 STAGEL WO 43

A-3



ORTEDS/DN/E3 TINE2105-2153 ITRGE! WO 6O
8
oA

8

e

8
sl

DATE06/05/65 TIME00S3-0101 STAGEY WDI0O

OATE06/05/65 TIMEDDTS-0USZ STAGEL WO10O

8
-

DATE06/05/65 TINENGR-01%) ITRGEY  WOIOD

A-4




g 8
g

8 2
8

8 g

ks ﬂ”l"
eI
s iz B

8 8
e
8 8
";-4
8 8
A
8 8




. =
L ||u1[}l' s 2
",” Hiﬁlﬂhiﬂ. =

= A'in::;;;;bsr,;:'

P




8 B
3
8 8
&
8 8

'“""lm!lh ’
; Ai'“:ﬂm:ﬂ'l,}”l " ||',
W

1
1||"'"'n|“"!i||

=

090)-0930 OB8EPSS WOOT? WSI1B TX6F 1A0BN-03) AN 30 DBEPES [ 1] NS16 TR6F 1AL Am
8_ B
il
8 8
8 ! 8
8 8

ml pHﬁ”:'
il
H‘: uulllfﬂ.ni f

1301-1331 0BEPES I) WOUSS WSLT TREFIAZN-ITI AN 32

1501-1531 OOXEPES 51 WOOTD WSI7 TREF IMA-USI AN 53




2101-2130 BXEPES 31 NOB

1901-1931 O¥EFES 31 WOUT1 W5Z2 TX26F INGBN-693 AN 73

TH0I-B3N TOELES 31 WI0ED WGE TR7FNIER-19] AN 57




nHHHIﬂ!!Mh -

umuu!,ullMHulIﬂ'

m‘{H.hu"Il e g

010)-0130 DYSEPES $1 WOOBL WS28 TRIF2RZE2-311 AUN 30

g
=

il ”H]III i
il ||||” il
|1II|”H|||II"JH|I!| Il

(e

A-9

i
l“ iIHull

nlml
il

A

|z

0201-0230 09SEPES 91 WSDOS WS27 TIR7FZAM2-371 AN 39

s

lIIIJl|
h ll|||||||llll

Il
|||LH¢||I|!.E||!EH

|

” i
I]”EEL”H

| &

O401-D430 DQSEPES 51 WOOB2 W5Z6 T327F2RYE2-49) AN 1)




E
‘ ‘ i ;
‘ | By
f d ,|!W|!!HMIII}HHIﬂéi"l'
'||il"’"||||l"“IEhuﬁﬁipf
A‘u II|| ||I|||| !!mlll !lh 8%

2.00 3.00
L L

1.00
ol

limw i

\_ '\. '\_',"\:-““\‘ '\‘ =

i |||
mt"" ||||||| i |||||
; lnlll“;mzﬂl‘.null I HH |

0801-0830 0YSEFES S) HDI03 WS27 TDBIF1ADD-032 AN 45

A-10




g
zf
,,;_'
il
| =
i

[
ik

|

Lntlmunuuu |
i
llllilllﬂﬂ| I |

N
4 [Hﬂ!%g!lll!!njll bl

i |
it it
| ||f||||||m||uHm=”1
'iil!!il!!!hH]l‘!”ﬁJ |
| W
] ‘J"
-

=
e —
2
.00
| E v
3.00 2
] &
Hl‘m g
i
“
a2
g
o
=

A-11




y.00

1310-1339 DISEFES 31 WO133 W3J5 TOO3F2M001-030 AUN SO

3.00

1

ORTEDS/DN/6S TIMEIXI-122% STRGE2 WO B2

A-12

N.00

X

\\

L}
/ R i
H -4
2l P -+~
1 =
LH T
HTLH ]
" -
i H
* 11
’
A
s I d J M

ORTEDS/OW/B3 TINE)2O0-1229 STRGE2 WO X2

y.00

ORTEDS/OW/ES TINEIN0L-1333 STRGE2 WO BS




ORTECS/U7/63 TIME11X0-1256 STRGEZ WO120

A-13

OQATEDE/01/65 TIME11SN-1220 STRGE2 WD163




DATEDS/01/65TIMEI220-12455TRGEZ WOV T3

ORTEDE/OL/6S TIME)2ID-12% STRGEZ  NO2BS

A-14

ORTEDB/ON/65 TIMEIMNG-1119 STRGE2 WO25D

DATED6/04/65 TIMEI300-1330 STAGE 2 w0280




1001-1030 09%EPES 32 NO110 529 TIISFIMZ-15) AN

8
=
B
L

B

1201-1730 OFEPES 32 WOIZD W30 TIISFIRNZ-271 ANIG

A-15

. A

I
ik
“ mimm:-‘.

|

ke
i

1100-1130 0OEPES 32 MO110 WS THSFIMER-21) ANLS

8
2

130-1730 OFEPFES 32 MI120 WSYS TIISFIAXR-I3) ANLT




APPENDIX B

A FORTRAN II PROGRAM FOR SINGLE-WAVE TRAIN ANALYSIS

The FORTRAN II listing of an IBM 704 program for the least square
single-wave train analysis of a spectral matrix obtained from an array
of ocean wave bottom pressure transducers is included. The listing is
from the FORTRAN to ALGOL translator of the Burroughs B-5500 and is
syntax free at the FORTRAN II level. The mathematics of the single-
wave train analysis is described in the body of this report. The data
collection system and calculation of the required cross spectral matrix
is described in Bennett et al (June 1964). The plotter subroutines
GPHPVW and PFB3D are also included. Bennett (March 1968) describes the
plotting technique in PFB3D which was used to produce the plots in
Appendix A. '




FORTRAN TO ALGOL TRANSLATOR
PHASE 1 FORTRAN STATEMENTS

¢ LISTING OF AN IBM 708 FORTRAN PROGRAM FOR DIRECTIONAL WAVE ANALYSIS.
C 13350=2 € BENNETT JULY 1967 SWOC 78°301-8210
¢ REQUEST=0268
¢ LEAST SQUARE SINGLE WAVE TRAIN rlf AFTER MUNK
DIMENSION ID(11):FQ(100)1NN(100):PERIOD(100);&AVLGH(100):THMAX(100
X)sDEPATNC100)» AVEP(100)sP(100,6,6),EMAX(100)TEM(146)
DIMENSION D(6,6)sPST(6,6),E€100,72),THETA(72),DEC73),THZRO(186),
XH(100),H1€100),H2¢100) »G00D(6)
DIMENSION DATA ¢1000)
E2TEN=0,83429448
TWOP126,281853
RTD257,29578
DTR=0.0174532925
éxyso.oerzeeaes
“REWIND 3
REWIND 9 '
CALL PLOTS(DATAC1000)51000)
CALL PLOTC0.0,=3040,=3)
CALL PLOT(2.552.523)
D0 S I=1,72
TIa(1=1)+5

S THETA(I)=Z]+DTR



10

00 10 I=1.6
DO 10 J=126
DC1,J42=0.0
PSI(1,42=0,0
N(1»2)=100,0

0(1,3)=100,0

. D(1,8)=100,0

0¢(1,52=100,0

0(1»%5)=100,0

D(2,3)=117,558
D(2,82)=190,212
0(2,5)=190,212
0¢2,56)=117,558
D(3»,42=117,558

0(355)=190,212

D(3,6)=190,212

D(Q;S)=117.558
N(85,4)=190,212
D(5»5)=117,558
PST IS TRIG ANGLE
D IS DISTANCE
PS1(122)%0,0
PSIC1,3)272.,0+DTR

PSI(124)=144,0%DTR
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15

20

21

22

PSIC1,5)2216.0«DTR
PSI(1s6)=286.0*DTR
PSI(2,3)=126.04DTR,
PSI(254)=162.0+DTR
PSI(275)=196.0+DTR
PSI(2s6)=234.0%DTR
PST(3,4)=198.0%DTR
PSI(3s5)=234.0+DTR
PSI(3s6)=270.+DTR
PSIC4»,5)=270,0%DTR
PSI(826)2306.0¢DTR

PS1(526)=342.N%DTR

GONDCI)= 1 FOR USABLE CHANNEL DATA AND 0 FOR BAD CHANNEL

READ 2, ISK]P »(GDODCI)»131:6)
FORMAT(12 ,6F1.,0 )

IFCISKIP)100,30,20

D0 25 1=1s1SKIP

READ TAPE 3,I10,FRC1)sWN(1),MsK
IF(K)21,22,21

PAUSE 20202

TAPE OUT OF PHASE WITH DATA READ DESIRED
GO T 15

MP:M+£

DO 23 L=2»,MP




23 READ TAPE 23
25 CONTINUE
GU T0 15
FRC1)=0,0 CAN NOT RE MEANINGLYFULLY PROCESSED
30 READ TAPE 3:[0;FQ(1)-WN(1{;M:K
IF(KY21s 31,21
3t MP=M+|
DO 32 L=2sMP
32 READ TAPE 3,1D,FOCL)»WNCL),M,K,DELTAT,DEPTH,PERIOD(L),WAVLGH(L),
XDEPATNCL) s AVEPCL) s CCP(Ls1,J)sd=156),12156) '
P(Ls1+J)==0.,0 IF CHANNEL I OR J IS NO GOOD
WNCL)Y IS5 WAVE NUMBE_:P:ZPI/WAVE LENGTH IN FEET
PI=3.141592744,
VALUE K NO LONGER NEEDED
GOONCH=0.0
DO 40 I=1s6
6000C1)=GO0DCT)I*P(2,1,1)
1F¢GO0DCI))a1,40,41
41 GODOCH=GOODLH+1.0
' GD0D(1)=140
40 CONTINUE
TERMS=1,0+(G600DCH*(600DCH=1,02)
DO 70 L=2sMP

SUM=0.,0.




51

S0

91

92
X

95

90

60

62

613

DU 59 I=1s6

IFCG0UDCINIST 50,51

SUM=SUM+P (L, Ts1)

CONTINUE

AVEP(L)=SUM/GOODCH

DO 60 K=1s7?2

SUM=0.0

DO 90 I= 1,5

IF(GNUDCT) )90,90591

1P = 1¢f

DO 95 Je IP,6

IF(GOUDCJ) 195,955,907

SUM = SUM#P(Ls1,J)«COSFCNNCL)#DCI»J)#COSFCTHETACK)I=PSTICI,J)))
*P(LsJr1)*SINFCHNCLYI*D(I»J)*COSFCTHETACK)I=PSI(15J)))

CONTINUE

CONTINUE

ECLsK)I=CAVEP(L)+2,04SUM)/TERMS

IF(SENSE SWITCH 1)62,63

PRINT6,FQ(L)»AVEP (LIS (IDCT) 121,110, (ECLIK) 2Km1,72)

FORMAT(1X2 {PE11,821PE12,4511A6/(10C1Xs 1PE11,4)))

6=0,1/0TR

DELTA THETAESDEG UR H=z1/24DEL THETA

DEC1)=G#CECL»2)=E(L,T2))

DE(?Q):G*(E(L»i)-E(Ln71)) '




61

66

67

69

68

64

65

DO 61 ITHETA=2,71
DECITHETA)=G*(ECLs TTHETA+1)=E(Ls ITHETA=1))
DEC73)=DE(Y)

K=1

D0 65 1=1572
IFCDECIDI*DECI+1))66567565
Z1=1=1

FIV IS 5 DEG IN RADIANS
THZRU(K)=FIV*(ZI*(dF(I)/(Dt(l)'DE(I*l))))
Kz=K+1

60 T0 65
IF(OF(TI))6R»569,6R
THZROCKI=FIV*FLOATF(I-1)
K=K+ .
IFCDECI+1))65564,65
THZROCK)=FIV*FLOATF (1)
K=K+

CONTINUE

NZEROS=K=1 .

DO 75 K=1,NZERDS

TERMS SAME AS ABNVE
SUM=20,0

00 76 1=1s5

IFCGOODCT) IT6,7587T7



IP=1+1
N0 79 J=IP,e
TFCGOUDCI) )79,79,78
7R SUM = SUM*P(Ls1,J)#COSFCWNCLI*D(I»J)*COSFCTHZRO(K)=PSI(I»J)))
X “P(LoJsII*SINFCWNCLI*D(I»J)*COSF (THZROCKI=PSTI(IrJ1))
79 CONTINUE
76 CONTINUE
75 TEM(K)I=(AVEP(L)+2.0%SUM)/TERMS
EMAXCL)=TEM(1)
THMAKCL)SRTU*CTWAPTI=THZRO( 1))
NO 748 K=2sNZERCS
TFCEMAXC(LI=TEM(K)IT3,74,74
EMAXCL)=STEM(K)
THMAXCL)=RTO*(TWOPI=THZRO(K))
THMAX IS BEARING FROM MAGNITIC NORTH
CONTINUE
SUM=0.0
D0 80 I=1,5
IF(GAUDCI) )80,8N»R1
IP=1+1
. 00 83 y=IP,6

IFCGOUD(J) )B3,83,A82

SUM=SUMMP L, I»J)#P (Lo IsJ)+P(LodsI)*P(L,rUs])

CONTINUE




80 CONTINUE
SSQ=AVEPCL)YAVEPCLY+2,0#SUM
HCL)3SSQ=TERMS*EMAXCLIYEMAX(L)
ATILOASAVEP(LY/TWOP]
HTILDA=SSQ=ATILDA*ATILDA*TERMS
HLCL)=1,0=CHCL)/HTILDA)
uch)acEMAitL)-ArLLoA)/(Avech)-ATILDA)
IF(SENSE SWNITCH 1)99,70
99 PRINT7, TERMSSEMAXCLIsATILOASHTILDA
7 FORMATC1XsFS.1,1P3E11,.8 )
70 CONTINUE
PRINT 3,CIDCI)»I=1,11) »CGQOOCI)»I=1s6)sM
3 FORMAT(1H1,39HLEAST SQUARE SINGLE WAVE TRAIN FIT OF ,11A6/
X1X»6F 2405 2Xs 2HM=13//
X3X» 9HFREAUENCY »SX 2 SHPERIOD» 3X» 1 1HAAVE LENGTH» 1Xs 11HATTENUATIONS 6X»
XSHAVE Ps8X,1HA»10X,5SHBRNG »8X,1HHI12Xs2HH1,10X,2HH2)
PRINT 4, (FO(L),PERIODCL) »WAVLGHCL) »DEPATN (L) » AVEP (LI »EMAX (L),
XTHMAXCL) »HCL) s HLCLYsH2CL) »L325MP)
8 FORMATCIXsOPF11e?r3Xs0PF9.5-1Xs0PF1148,1Xs1PEL14ds
X 1Xs1PE11.4»1X01PE11,8,3IX, OPF7,253XstPE11,428X50PF8,3,6X20PF6,3 )
DO 110 L=2,mP
AVEPCL)SE2TEN®LOGFCABSF CAVEPCL)))
EMAXCL)SE2TENLOGF CABSF(EMAXCL)))

110 WAVLGH(L)SEMAXCL)=E2TEN«LOGF(ABSF(DEPATN(L)))




AVEP(1)=AVEP(2)
EMAX(C1)=EMAX(2)
WAVLGHC1)=SWAVLGH(2)
CALL SYMBOL(2.0,Me75,0,15144WAVE TRAIN,FN= »0.0,14)
CALL NUMBER(3.5,0¢7550415FQ(MP)»0.0,2)
CALL GPHPVW(MP,IN»AVEP»EMAX»>HAVLGH)
WAVLGH IS SURFACE WAVE STAFF SPECTRUM EST FROM BOTTOM PRESSUKE.
AVE=P EMAX=V WAYLGH=W ON THE PLOTS,
IM=M
NP=DELTAT*ZM*0,5+1,0
DELX=0,0
D0 115 I=1s6
CALL NUMBER(DELX»0,1,041,6000(1)50.0,=1)
115 DELX=DELX+0,1
CALL PFB3D(NP,IDsEMAX,F@s THMAX)
60 TO 15 '
100 REWIND 3
CALL EXIT
PAUSE 70707
GO T9 15
END(Os1515051)

END
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10

FORTRAN TO ALGOL TRANSLATOR
PHASE 1 FORTRAN STATEMENTS

SUBRAUTINE GPHPVW(L,ID»ZLOGPsZLOGV,ZLOGW)
SPECIAL FORM OF GPHPVW FOR 13350=2 AUGUST 1967

DIMENSION ZLOGPC?2),2L06V(2),ZL0GH(2),10(2)
CALL PLOT(0,0504053)

CALL PLOT (0.05104552)

CALL PLOT (8.051045,2)

CALL PLOT (8.050.0,2)

CALL PLOT (04050,052)

CALL PLOT (2.051.5,=3)

CALL SYMBOL (0,05=1,05=,1510(1)50.0566)

CALL AXIS (0.0,0.0,ZOHNURMALIZED FREQUENCY ,220,5¢0,0.0,0.05,0.2)
IMAX=ZILOGP (1)

DO 10 I=2sL

COMPAR=ZLOGP(I)

IMAX=MAXLF (ZMAX, COMPAR)

MAX=7MAX+3,0

AE=MAX=8

CALL AXISC0e0s040»17HLOG POWER DENSITY»1758¢0290+0sBE,1.0)

-DX=5,0/FLOATF(L=1)

Y=ZL0OGP(1)=BE .
X=0,0

CALL PLOT(X»Y»3)
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20

21

23

D0 20 I=2sL

X=X+DX

Y=ZL0GP (1) ~6E

CALL PLOT (XsYs2)

CALL SYMBOL(XsYsNa1s1HP»0,0s1)
X=5,0

Y=ZL0GV (L) =BE

CALL SYMBOL(XsYs0e1s1HAS0.0s1)
CALL PLOTCXsY»3)

M=l =1

DO 21 I=1sM

X=X=0X

11=L~1

Y=ZLOGVCIT)=BE

CALL PLOTCXsY»2)

WMAX=SMAX

X=0,0

Y=ZLOGW(1)=BE

CALL PLOTC(XsY»3)

D0 22 I=2sL

X=xX+NX
TFCZLUGHCT)=HMAX)24,23,23
Y=8.,0

GO TO 22

B~12




24
22

30

40

50

Y=ZLOGW(1)=BE

CALL PLOT(X»Y»2)

CALL SYMBOL(XsYsN41s1HS»0,051)
IF (SENSE LIGHT 1)40,30

CALL PLOT (=2,0+940,=3)

SENSE LIGHT 1

GO TO 50 |

CALL PLOT (640,=12,05=3)
RETURN

END(Ns1,150,0)

END
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10

FORTRAN TO ALGOL TRANSLATAOR
PHASE { FORTRAN STATEMENTS
SUBRAOUTINE PFB30(N,IDsP,R,8B)
P=FUNCTION OF R = POWER DENSITY
Bz FUNCTION OF R = COMPASS BEARING

Rz FREQUENCY IN H{Z

DIMENSION IDC23sPC(2)»R(2),B(2)5CC360)5,50360)

T210.0
D=0.70710678

DTH=0.017453293

DTH IS ONE DEGREEE IN RADIANS IE RADIANS PER 1 DEGREE
A=0,0

DO 10 1=1+360

A=A+0TH

CC1)=COSF(A)

SCI)=SINFCA)

CALL PLOTC0.050,053)

CALL PLOT(0.,0510.5,2)

CALL PLOT(B.0510,552)

CALL PLOT(8.050.052)

CALL PLOT(0.050,052)

CALL SYMBOL(1409045,=0,1s10C1)2040566)

CALL PLOT(4,053,55=3)

CALL PLOT(3,0,0.052) ‘

B=14




30

20

CALL SYMBOL(3,25-0,050,121HN ,0,051)
CALL AXISC0,0s1,020H 5055,0590,05,=1.051.0)
CALL PLOT(0.0,1,053)

CALL PLOT(0,0,0,0s2)

CALL PLOT(=3,050,0,2)

CALL SYMBOL(=3,2650,050.1,1HS »040,1)
X==3,0+D

Y=X

CALL SYMBOL(X=0s12Y=0.1,0,151HE »0.0,1)
CALL PLOT(X,Y»3)

CALL PLOT(=X»=Y,2)

CALL SYMBOL(0.1=¥»N,1=Y,0.1,1HW »0.,0s1)
CALL PLOT(0.050,0s=3)

DO 20 I=1s6

A=0.5*FLOATF(I)

CALL PLOT(A,»0,053)

DO 30 J=15360

Y=A+S(J)+D

X=A*C(J) + Y

CALL PLOT(X,Ys2)

CONTINUE

CALL PLOTC0,0,0,00=3)

N=10,0#D

10#D NEEDED TO SCALE 0,0=0.3 TO 0=3 INCHES ON PLOTS
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49

42

41

50

DO &80 J=2»N
RAD=DTH#B(1I)
YSRCTI)+D*SINF(=RAD)
X=R(I)*T+*COSF(RAD) + Y
1UD=3
CALL PLOT(X,Y,1uD)
AY=P(l) + Y + 1,96
2 IS NDT ADUDED SN TpP SYMBOL WILL BE THE REFERENCE IN
CALL PLOT(X,»2Y,2)
CALL SYMBOL(X,AY,0,0852,0,0s=2)
CALL PLOT(X,AY,3)
CALL PLOTC(X,Y,2)
IFC¢SENSE LIGHT 1)41,02
CALL PLOT(=4.,0,7.0,=3)
SENSE LIGHT 1
GO 1O 50
CALL PLOT(4,0,=14,0,=3)
RETURN

END(Os1,12051)
END
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APPENDIX C
A FORTRAN PROGRAM FOR ITERATIVE WAVE TRAIN ANALYSIS

The FORTRAN listing of a Burroughs B-5500 program for the itera-
tive least square multiple wave train analysis of a spectral matrix
is presented. The mathematics is an iterative utilization of the
single wave train analysis described in the body of this report.
Following the single wave train analysis of the measured spectral
matrix the resulting values of single wave train power, A, and wave
bearing, ©, are used to find the spectral matrix that would occur for
such a wave, Details for this are given in Section 5 of this report.
From the above, a residual measured spectral matrix is formed by sub-
tracting a fractional portion of the single wave spectral matrix from
the previously used spectral matrix., The residual spectral matrix is
then single wave train analyzed. The above procedure is continued
iteratively until a specified number of iterations have been com-
pleted or the residual spectral matrix total power gets smaller than
a specified value., Table Cl shows numerical results for several fre-
quencies. Figure Cl is a plot of the bearing, 6, and the ratio of A
to the total power available in the original measure spectral matrix
for the frequency band 0.00833.to 0.24187 Hz. The iteration parameters
were set for a maximum of five iterations, a residual power ratio of
0.1, and a fractional portion value of 0.1l. Both results are for data
collected for task SWOC at Stage II between 1220 and 1249 hours on
4 June 1965. The wind speed was 12 knots from a bearing of 280 degrees.
In Table C1 A, H, and bearing are as previously defined. AVE P is the
average Cii(f).for the residual spectral matrix and P is the AVE P for
the first iteration; i.e., the original measured average power. The Hl
and H2 values are measures of the isotropicity of the energy represented
by the residual spectral matrix. Hl compares the least square value of H
with the value H' that would have been obtained if the wave energy were
isotropic:

H1 = 1.~ (H/H') .

H2 compares the power A of a single wave fit to the total power, AVE P,
and the value A' that would have been obtained for isotropic energy:

H2 = (A-A')/(AVE pP-A").

Both Hl1 and H2 are between 0 and 1, the lower limit is for the isotropic
case and the upper for a plane wave from a single direction.

c-1




690 %0 - 2GHY0 00 326V1F - 6ZNE0 G922 61— -00--39L9h ) - - T0-3dVOT R | -
e 00C*0 29W0 00 J26T1E. LiB20_G9t26V__..00_.32865%1 L H0L3L00'6 WM — .=
- O8G0 €060 00-_3c¢ellee (CE£6°Q €926l CU_428 642 ¢( 00__35000utT. £ —_—
—  __096°0 - 026%0 00 -Jgo6lltf 68620 GQ2261-..00 3ub9s°| 00 32V 8 L
_—  60G%0--BfO%U .00 Jeelllf. 45020  —$9:6b QU . JUyyy° ] 06..32%¢¢*Y -V .

—_— 000001 o!!:!
2H TH SRR | e 44y aNIuy3s ; Voo . Mplivy3ll _AIN3NO5HI
60E%0--621%0 10=37¢6/%6 4ht>0-——eh226——J0=34506/ 10311118 . < —~
0hE 0 127°0 _10e32¢6)%4 2%E'Q Zhe26l | T AN (NI VATR AL S n
176°0_ 6080 10~32260 6. et (. Zh 26l [0=3€tve 4. [0=3ESey’E £ .
£05°0  THH*0.__10=3/2260°%6 . clu'Q ZntzZel [=30%2y*d __10=-30/1€"N [4 _..
hEL*0__AQu"Q Snfnmm.\_ teet( 26l [0=4JG1 %48 1Q=39%c g tr I

l 2991600 ___
w M i H FYA" nnIyv3g 4 dAV Y N DAYR3LT ANANe3NS L
£1-20—3 €€ 0—o-IL9L 6t —21 b6 Lg-3lusety—lo-305qcc 1 S
:: 0__ 9660 __10=3/9/2° ) 9920  21°€6l [0=354%6¢°h o=t yn* 1 b _ L
€0T*0  lon*0  10=329/2¢°) Ge2'( 21°€61 [0=9¢e51 S 1031401 £
Qlz*0___hec*0 _lo=1/9/2°) €CF°0 gl°€a1 lo=311yt*¢g 1p-3061¢g* 1 Z
bb2°0_ CEC*Q  10=329/2°%) C9f'G zl'€6l 10=4c¢the*Sg lp=3112¢*2 i
_— .. EEEEY0'0
2H 1H H d/v L ¥ B e ¥ d dAv % ACIIYHILT  ADN3NG3E4
—————€2150— 20— T0-3c1eL ) e ..;..f??l%o?mﬁ?lfrth 0r3€Se0t] 5 e
J81°C _€0¢2°0 10-32€0.°) 642'C £1°0]) 1p=3€clc®n  19-36%¢1°1. v =
£01°0  026°0 10=3£€02%7 /20 EZYE LGt Ity S..um:m.ﬂ £ .
6810 1e€*0. _10=-3€€0/*L 2QF°Q 6c*S lo=3ULeu"H [0=30/c¢k "1 < _—
J12°0 2hp*0 _lo-3£€0/°) Eue'0  62°S _ [Q=3yYchy'h 10=395kG" 1 I
Q00S/0°0
2 1H M d/y  onlyv3g 4 3Ay v zik?uﬁ!.ru?u:auau
_—242 .é|¢ma[o LATmmo%_Ithmmlo..itlor ;Ilrv?trflfslrb?.wnrrn Fo o G ;
Qlf*0 20%°*0 1n=311f@*) J9f* no*1§ - Tp=3trqp” IR AT R v :
IhE0 6650 __10=311E0*/) €Gn"* <0*1] S&E;n..a_: fhaarble®l & e
9/£°0  H19°'0 _10=3[1€&*/_ htnrr.o_ co°*l} lo=3esinth. _ bUARSel e € o cynmiany v s
£00°0  €99°0 10e-3L1E@*) £0C*GC cp*1] [Q=F0tgy*n tu=3lc¢yg* e l

. 1999Y0°0
2H IH H d/v nNIMYIR 4 3AN Y . NLELIVYNILT  AININE NI
L€ 0 9GLG 1036286t  LC°( slong lUumd9729°¢E 1030y g1 (Y o

e BZB*Q_J0Y%'0 .. 10=3G¢N0tL tER G 6G°H Ju=3v6le € L0300 eV _ b ..
CCn®0._ 9CY*'0  10-362n0°Z _lew G __eG*y _ 10=3S8t0"n = 10=j6kB]'C Lt — .
9Qp°*0 09070 10-362RC*/) 4%C*Q £C*H Ju=42182°n 0-21281"¢ 14
J16°%°0  aW4*0__ 10=3%¢00°2 1%6S°0 £Gh _Ju=3guesstn boe3€C0g°C V. ;
. . EEE¥S0°0
2u v H d/y enlpyia . d JAV v RCLIvN3p 1 AJNdAE NS

SISATYNY TYNOILDIYIA FIAILVYELI 40 SIINSTY TVOTHHWNN TWOS

10 FT9vl




. 24187 . 29594
[ |
l
|
|
! !
i [l
| e
U
| w
| n
!
= | v
== | <
o I ay
& | 2
11667 6.77482 &
= - l o
L ! J| =
= | =
1 1
] 1
L !
1 J
L | | !
[ ! |
| |
1
. 00833 i . 85354
L | | | )
N E S w N
WAVE DIRECTION
FIGURE Cl. ITERATIVE LEAST SQUARE WAVE FIT DIRECTIONAL ANALYSIS
Cc-3
|




0oEnCooc V0=(eg*1)18d
002000 JONVLISIN ST ¢
001nC 000 3luny 9inl S1 IS
000vG00C HOS L l=(998)(
006ELO00 21¢°00l=(%99)0
008EC00C £CS* 1 l=0Gey)Q
004£0L00C eletlel=(99e)Q
009¢EC00C ¢1¢t06l=(Ge)U
00S€C00C eSS 2il=(hedg
0OrEC000 FGS I I=(59¢)0
00€€C000 ¢1¢*06l=(52)0
00CEC000 cle*0pl=(needQ
001€C000 $eSe21T=(9¢)0
000€CL000 0*oul=tyet1dQ
00620000 VoUl=(SeT)(
0082C00C TUtoul=(ralyo
00226000 veoul=(teldU
00926000 veoLt=Ces 1)U
0062(000 V*0=(ri)ISqg
0012¢000 0*0=(1r )y
00£2C000 94i=r Gl nNo
002000 9¢i=I 1 DG
ooteCooo Hiu*17=CI)vliaHl
0002C00¢C Ga(i=02=12
00610000 2/¢1=1 6 nC
00816000 1437 3HL wl &vY1¥p 8311076 138
00210000 : (tasl*Ue*("2)101d 1V
0091L000C SYbY9ZIR0USATY
00910000 Seteksrlotu=nig
00 T1L000 ¥iG620 28=U1LN
00€1C00U felng y=1diml
00210000 wphecnEy*0=N1123
00T1C000/ Hwd T 20212EnG*UNIY 1076/ L 0ad0KS JINI3IXT JIkbh , TTHINQD VIV
00010000 (OOIIAAVCCUUTINIVAIC (LCOLIHY TAYMLLOTICUTIHIE  ANOTISNIWIO
00606000 (AT FLENG'PNIIIOY «
0u80L000 CYITBUY C(EL) A0 C2IVITNLe (€43 (999)iSge (Y 90

00400006 (ONTIINUZHL (O TINIL (Ye9¢00[)d (OOLINMCO0bIpACi1dGT  ANDISNINIU
INIKWEIS 40 LrvlS

00900000 F961 T1ddy  MHIHHVE ONVESSUNDUOLNS‘HINTIRONNNR Hd)dy
00S0600¢ 104 NIy¥] 3JAvm 3uvNOS 1SV 40 NNIivyILEl A8 SISATVNY NGO 04SvH
00v0L00C *CJ61 ROMVW LIANNIH ¥ THuvd AR *SNIA AON3LDIMS 40 TVAHIINI
0080000 Ny ulid 11734 Nlvayg 3Ave 3610w 40 NO2iwH3gpl sctt 14/ y0400M8
0020000 . Ce=3rySednl/7dy04=06
0010l 000 04=0Gu0dduenduVIl=LINGIIGEL L 429
ool e 19=GHUI AL XILT0t =IAVS DL TUI /DM HUd=t

R LARDBS : LI IR Ve L N O U U o 46 o
¢J3 314avl




0006C000
00680000
008860000
0028C000
00980000
00580000
00180000
00€806G000
00280000
0018C000
00080000
0062C000
008206000
00420000
00920000
00S20000
00920000
00€4C000
00220000
00120000
00020000
00696000
00890000
00490000
00990000
00590000
00v9C000
00€90C000
00290000
00196000
00096000
00650000
0085C000
004506000
00950000
00550000
00450000
00€SG000
00250000
00150000
000580000
0069C000
00870000
00490000
Uo9nCooL
00690000
00rvC000

w0 IAVPu=(1)008

(90 0U6=(11201°“U1°0°t9%ta’s" () I0UNAS 1IVD

(0940°06=¢(T1)AI“%1°0°52°1a’s ) INYWAS 1V
. 1°0=A130=A130 ¢t

(T=0°06=(1)0U00920°0A130U*1°(I¥IaNNN 1V

9¢1=1 ¢v 0Q

¢*0==A134

*(XYWHI*XVh3) 40 107d AININOI¥S SA 9NIHVEY Mud 138V (ONV SIXV

(O L=eHIOULD)*RI00ND)+0* T=SHYIY
INMNIANDD OV

0°1=(1)0009
CPI+HIADLI=HIUO0D Y

TheOb 100 CI2¢NUYI Sl

(I°te2)gs(ldu0ONY=CT Y0009

9¢i=1 0% 0¢

0°0=HIUNDY

g3033N »39MpT gN X 3NTVA

s*e226clgltg=1d

1333 NI H19N3 IAVM/14C=HIEROIN 3AVM ST (TINM

0009 ON S1 £ HEo 1 13INAYHI J1 0*0e=(ri¢)d

€ 3S071)

(QT= (YT (re1¢1)a))*(HdAV (TINLYVd3C |
CCHHOIAYM (I O0THID HLA3ULVLITIA N W (TTINM(NVpdeC] (€) dv3y et

- . dn¢g=T ¢€ 0a

14+n=dh

WeR (TINMO(TIpIeC] (€£) Qv3y
VIXur0"¢c=dXQ
¢®0 = 04xa ( ¢*0 47 vix0 ) I1
9 3S0719
(0*94E¢9TIE€ 0T 49)IVYNYH0S ¢
OAXUeINIDHID 0T AVHHLIXYR e dedTe(oel=1601)qlND) (2¢9)0VIY
IINNVHO OvE ¥O0J 0 OGNV VIVGO 13NNVHI 378YSO ¥ps T =(1)Q009
YiUsC cnE=(9°G6)ISd
HIUs0*90E=(90)]Sd
¥iUs0°0222(5 %) 1S4
ulUs*042=C9€)1Sd
BlUsU*9EZ=(5E)ISd
¥LUx0*BE61=(1E)ISd
ElUsO®UE2=(9°¢)1Sd
BiUs0*B6T=(GeC)[Sd
YilUs(ecOT=(t¢C)1Sd
HiUs0O*92T=(€vc) [Sd
PiUsO®882=(9T1)ISd
YiUs*9l2=C¢5*1218d
ELUsOONT=(t¢})1Sd
Hl@eG"¢2=CE“1)1Sd
(A3INNJLNOD) ¢J 3779Vl

OO OO

]




00LET000C
009€1000¢
00SE 1000
00r€ 1000
outtlooo
0092€1000
001€1000
000€1000
oo62loo0
00821000
0041000

(11 MatrNSsWNS 1S
P1SeUs 19001 unnY) 4l
9ei=] US 00
07 01 0% (HLIXVKh *19° HL1)41 1+ w1 =811 f0°*U=hNS VOL

((9°64*x1)/ucH L b d/v w b
‘u INIEVIE d Invexiteav NULIyydILll  AUNINIEddd w)ivnalid o
(N1Ib4d ‘6 INI¥g
usull .

Jhe37=7 v 00
(£°23°u=IN3DHId & ¢ Wwluf9°6dC cu) dYMvb AININBIYILC
YTt 240, =011V WAWINIW w'nlfu=NOIlyn3le WonlxVy Ww0*249°x1 1

00921000/79viTey du 214 NIvHL 3AVYM 3741100 JHEYOUS LSV3] IALLIVEILT W)IVNH0S & ~

00521000
004921000
00€21000
00221000
001¢1006
00021000
006110006
0pellpoc¢
0021l000
00911000
005110006
00v11000
00€11000C
00211000
oolilooo
00011000
00601000
0080100¢C
00401000
00901000
005010006
00v01000
00£0100C
00201000
ootolooo

00001000

0066L000
008606000
0026C000
0096C000
0056000
0onet 6oL
VUEGLOUU
006000
00l6Lu0OV

INIDMHEAd ¢ 1

(ARIDAeC AN Je0T IV H O NLIXYRe (Yo b=l e (IDUOLY)eCITel=lea(])O0Id)ey LININd
(ELOGP0CIIUDH DT 06260 C)INBWAS 1Y)

“ Aus(EdUdBEWlISNIOLW=le) Uttty 2+ 3M0du=(1)00Y

(RO U CIIYIe T 00 190°¢)INyWAS 11V)

w(ZF)AD. =(t)0IE

WN3038, =(C)UIE

wi 3MvM, =C1)0du

(1e0°06=*C1)Q28N1°0 10 “4e*LadnuWAS TIVD

“ Puz( 0004 w
(190°06=°01)029¢01°0°/ 1a®sc Ca)INGWAS TIVD o

“ FJu=Ci)0dd
(160'06=0(1)Q284R1°0¢5°€aetC®0)INRHAS TIVD

M Suz=(1)UIH
(1eC'06=9C 10024 N1*0 t cmfGC ()N0uMAS 1TVD

“ pus=C1)(00d
(160°06=*C1)QUB I 0 b =6 Ua)NENAS 1TVD

“ Nu=( 10008

(cel®s=e1°0=)10d 17VD
leeg®(=9C*0 )1N4 1VD
Ceop®yme(eG D104 1VD
(coeh®Gadl*Ua) 1Nd 1IVD
(eeh®g=e0°U H)10Td 1V
(caeY’tmeCoU )14 VD
(ceg rmele0a)1nNd 1TV
(¢ce9*t=e(eU ) N4 1TV
(cst®1=¢C*U ) 103d 1Iy)
(ceg®imeleua)INTd 1TV
(¢fH*1=00G°0 D INTd TIVD
(20000 DINTd 1vD
(2C*0el°Va)ynNd 1IVD
(Fmeg2® 1 1)1007d 1Y)
(PISU*Ue=CIUdu*y1 0 L tas (°1XINEHAS 1TVD
" Nuw=(t)0J8

w103 ius=(cdUIY

(Q3NNILNOD) 23 378Vl




vov8louo
00€81000
00261000
00181000
00081000
00621000
00821000
00441000
00941000
00521000
oorL1000
00€21000
vpeslo00
00121000
00021000
00691000
00891000
00491000
00991000
00591000
0091000
00€91000
00291000
00191000
00091000
00641000
00851000
00451000
00951000
00551000
007%1000
00£$1000
00¢$1000
00151000
00051000
00641000
00841000
004%1000
00991000
00511000
00%11000
00€ER1000
002u 1000
0oinlpoe
000ricou
V06E 1000
008€1000

JAUly SV IwYS SHWy3L

SUMIINI=X 44 00

1=¥%=SUy3ZIN

INNILINDD

T4R=X

CIXAvUNde AT 4= (NIUYZHL

SOeuYaLY((1+1)30)41

LaX=X

(1aI)lyUNd«AT 4=(X)0NHZHL

£9¢66989((1)30) 31

S9 0L 09

T4x=)
CCCCI+1)30=CEIU) /7 C1X3UD+IZ)4AT4=(RIGHZHL
Shy1aVvy N1 930 S S1 Ald

l=1=17

$926699((1+])30+(1)3U) ]

¢le1=1 49 00

I=y

(1)30=(€4)30

((1=¥13HI1 D3=Cl4yldkll I3)«9=(yvl3H11)30
1242¢=V13HL] 19 0¢

(14 D31 II)a9=(2L)30

((€2 ¥3=(2Z II)+9=(1)30

vi4Hl 130«2/1=H ¥O Y3USSVLI3IHL vi130
ylu/s1°0=y

SWHIL/ (WNSe0*2 + d3AY)=(X%)3
INNTINDD

INNILINDD

(P el)ISda(¥IVIIHLISOI*(LeI)Us(VINMIMNISH(IreT)de
P eI)ISda(HIVLIAHLISOI* (L IUsCTIINMISUIS (1N )d+iNS = WNS
26°56¢56( (r)unu9) I
6'dl =r S6 0C
141 = dl
16506906C (1)UNUY)II
Sl =1 06 0OU
0°*0=hnS
clei=x 09 0U
INNTINGD
(6 ¢0°06='XVNd*L0°0¢G¢°Lae0®0)yduhnn 1VD
(€e2°2=¢0"0)1ud 1YY ¢ (£°0°0°0°0)1074 11V
(& ¢0°06«*C1)0492V°0¢8 0000 yIphNN 1TV
(£=fU0 't 4XU) 304 V1IVI
d3AY=Xykd
009 Ly CY% (1 *3n° ¥11)41
0/ 01 09 (0 *371° di3Av )4l
HICLGD/HAS=dIAY
INMILINDD

(Q3NNILNODJ) 20 3789Vl

s9

29
®9

69
L9

99

19

c9
09
o6
s6

[4.]

16

009

06




0OTECOOL
V00EC000
0062¢000V
00eCCUOU
6042¢000
0092700¢C
00Gze00C
0Un2e00C
00€2¢00L
pueeerue
00%2¢000
00022¢00u
00612000
00812000
00412000
00912000
00S¥1C00LU
0un 12000
0aE12000
0021¢000
ooVlicoou
00012000
V060Z000
0080200C
00202000
00902000
00G0C0VU
0or0Cco0C
00£02000
0020cQ00
0010c00C
0pU0CooU
0u661000
0086100C
00261000
0u961000
00661000
0ur61000
v0E61000
00261000
onlelouy
0006100C
voeyl ool
veHEiLoL
undwlooc
0oYsICOU
00sEl00C

IGNTINGDD 0142

CLINADY3d *xVr3) « ([e1¢7)g = (Le160)ag (U *3+° (iduOuyddl
Y*1 =1 0VZ 0G
S04 01 bty (0 pLlyx 1% 19914l
(£9742a0eN*¢1Idl e 4 492%63du 't el3dln 113l xseyl *xtl ,aVAEDY
CH Ik ¢ § ¢ 1835 ¢ XxvywHL ¢ d3Mv *xvn3 <831 ‘) ININd
ZH 1H H o nllvy 9nIyv3w d 3 v NCTLlyNgll

CeoaAsX)10Td TTVY £Ce A C*0X109Td 1V
D4X0 » 1531 = X 1(0*Uvt /aVWH]) x 2°[- = 4
(VGT11VadIPV)/ZCyuTliVaXyud) = ¢h
(VOULAH/Z H)a 9°T = 1k
SWHIley0 1 vevullivVensSS=vUIILK
1d(M1/7d3Ay = vU1l1Y
XyWiexvhi «Spd3i- 0SS = h
) ASe0®c + o3AV * d3Ay = 0SS
INNTAINDD
INNTANGD
(Leredge(ler Dt (rl e Des (L1 N atnNS=KNS
¢birbet s (10PUY) AL
Y41 ty 00
- T+]l=dl]
1L 0s( (1dyruyl il
Sey=1 Ow 00
utUshNs
X¥ha/XV¥id = 1S3)
InNLINUD
HidUN JTLINDYW hOM2 YUNIEVIA ST XVhHL
((XInuZblaldublde ULy = XVhHL
(M) HZHL = XVhUY
(MIW4l = XVKW3A
el ot d((¥InIL=X¥I) ]
Sur3LNse=x w2 OC
(CI)pH7hlalagUmMi)®dly = xVWHI
V13Kl 40 NOISTIANRD SSvan(ly 0! 91¥L
(1XpazHl = xybOd
(lywal = xvwi
Swd3)/(F S*C®c + dIAyI=(XIndL
AINNTLINGD
InM1INDD

(CCrel)ISda(NIUNZHLISOD# (P I)Le ¢ IAMINISe(Ll P 1)de
CCCT e1)ISda(XIUHZHLIISUD# (a1 )GeC DINMISUD* (1 1 4)d+uNS = KNS
Wloele6 0 (1)UPLYI AL
Yedl=r o4 00
T+i=dl
L4990 (1)UCLY) 4L
Gel=1 $4 0u
Couto=nNs

(G3ANILNOD) 20 319Vl

(V2]
¢ 0
4!

11

v/

(4

G4
91
6!

w/

44




ININD3S
00862000 -
Q0492000
00992000
00S%2000
- 0099000
00€%2000
0024C000
0022000
000%2000
006€2000

N3
) d01S
=. T CIYANDY ) d12 1Y)
6 35071
(666°€¢0)101d VVD 00!
INNILNGD OZ
002 041 09

3NNTANDD Otd
INNTLINDY O24

ININD3S 40 LHVILS

IN3NW93S
008€2000
004€2000
009€¢000
006€€000
00%€2C000
00€€2000
002€2000

CCCCCreIdISd = XYNUY¥ISOD |
w(PeIIOPCIINMINIS #XyWIde LINIONIE) ¢ C1°0*N)d s(I“reV)d
CCCCCreI)lsd » XYWOMISOD ¥
2 (P eI)0sCIINMISOD »XYNI)e LN3IJBIG) o (FeleN)d = (Ce1¢N)d

02 04 09 (v *83° (r)alu9Idl ¢9¢dl = 02s 00

1+]1 & 41

0€Z UL 09 (0 °*83° (I1)0up9)Ysls oV =1 0t 0C

(Q3NNILNODJ) ¢J 378Vl




A
LR Lo Tl Y TN ' ome i LAY,
s :‘k&%ﬂm L e U R R LTIV OREE, LS s i clon o AR LM 2 e IR oo Wﬁ*}rﬁ” ‘%A

4
2 ;1-‘-’:5&

I;;(
ik
UNCLASSIFIED 3
Secunty Classification ‘{‘
DOCUMENT CONTROL DATA - R & D g
! (Security cleasilication ol Hile, body af sbsttect end indesing anni1atinn musi be entersd wher the Sversll repar’ lg slavaifred; ..(
! ORIGINE ING ACTIvITY (Corporata sulhor) A MELPORT SECURITY CLOSHIPICETION '32
Naval Coastal Systems Laboratory UNCLASSIFIED i
Panama City, Florida 32401 1
<
3 AEPOAT TITLRL ;
;

THE DIRECTIONAL ANALYSIS OF OCEAN WAVES: AN INTRODUCTORY DISCUSSION

4. DEKICRIPTIVE NOTLS (Typs of report and Inclusive ratas)

Informal

8. AUTHON(S!I (Fire? name, middie Inliiel, iaet neme)

I

Carl M. Bennett

8 MEPOATY Qo . . 78, TOTOL NO. OF PaGIES 710. NO. OF nrrs
December 1972 . ' 83 12
88, ONIGINATOR'S AEPOA Y NUMBE R(S)

e CONTROCT OR GRENT NO,

5. PROJEC T NO. . NCSL 144_72
< Task SWOC SR 004 03 Ol, Task 0582 [ 3iMEa ASFONT NOW) (Any other numbers Mot eer be scatgned
« ZR 000 01 O1 (0401-40) First Edition NSRDL/PC 3472

10. OISTRIBUT'ON STATEMENT
1

Approved for Public Release; Distribution Unlimited.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITAAY 8CTIVITY

Second edition. This report was " Commander
originally issued in September 1971 Naval Ship Systems Command (OOV1K)

NSRDL/PC Report 3472,

13, ABsTmeCT

" An introductory discussion of the mathematics behind the directional
analysis of ocean waves is presented. There is sufficient detail for a
reader interested in applying the methods; further, the report can serve
as an entry into the theory. The presentation is basically tutorial but
does require a reasonably advanced mathematical background. Results of
a program for the measurement of directional ocean wave bottom pressure
spectra are included as an appendix. This second edition makes corrections
to the first and adds some details of an iterative directional analysis

method.

P

Hevn 1473 EIRR.

L i S Wk S




UNCLASSIFIED

Security Classilication

KEY WORDS

LINK A

LINK B

LINK €

ROLE wT

ROLE WT

ROLE W1

Ocean waves
Spectrum analysis
Fourier analysis
Matrix methods
Convariance
Bibliographies

IDENTIFIERS

Cross spectral analysis
Directional analysis

SWOC (Shallow Water Oceanography)
Ocean bottom pressure data

UNCLASSIFIED

Security Classificstion




000100

000400

000500
003100
005600

028900
029000
029100
028500
021000
023900

027200
015900
019800

026900

018800

021200
028100
036100

INITIAL DISTRIBUTION
NCSL 144-72

Chief of Naval Material
(MAT-03L4)

Commander, Naval Ship Systems Command
(SHIPS OOVI1K)
(SHIPS 2052)

(Copy 1)

(Copies 2-4)
(Copies 5-6)

(SHIPS 03542) (Copy 7)
Commander, Naval Ship Engineering Center (Copy 8)
Assistant Secretary of the Navy (Copy 9)
Chief of Naval Research

(ONR 410) (Copy 10)

(ONR 414) (Copy 11)

(ONR 420) (Copy 12)

(ONR 438) (Copy 13)

(ONR 460T) (Copy 14)

(ONR 461) (Copy 15)

(ONR 462) (Copy 16)

(ONR 463) (Copy 17)

(ONR 466) (Copy 18)

(ONR 468) (Copy 19)
Director, Office of Naval Research (Boston) (Copy 20)
Director, Office of Naval Research (Chicago) (Copy 21)
Director, Office of Naval Research (Pasadena) (Copy 22)

Oceanographer of
Commander, Naval
Commander, Naval
Center

(Code 561)

(Code 01)

(Code O1B)
Commander, Naval
Commander, Naval
Commander, Naval

(Copies 23-24)
(Copies 25-26)

the Navy
Oceanographic Office
Ship Research and Development

(Copies 27-29)

(Copy 30)
(Copy 31)
Weapons Center, China Lake (Copy 32)
Air Development Center (Copy 33)

Electronics Laboratory Center,

San Diego (Copies 34-35)
Commander, Naval Undersea Center, San Diego (Copy 36)

(Dr. Robert H. Riffenburg) (Copy 37)

(Dr. W. J. MacIntire) (Copy 38)
Commanding Officer, Naval Civil Engineering
Laboratory . (Copy 39)
Commander, Naval Ordnance Laboratory (Copy 40)

Officer in Charge, New London Laboratory, NUSC (Copy 4l)

Officer in Charge, Annapolis Laboratory,NSRDC

(Copy 42)




022600

029600
027900

015600

022500
002700

002500
002300
014900
007900
015400
000600
028600
034700

015300

009500
013400
004200
000700

010700
012300

Director, Naval Research Laboratory
(ONR 481)
(ONR 483)
(ONR 102 05)
Ocean Sciences Division (NRL)
Library (NRL)
Commander, Pacific Missile Range
Officer in Charge, Environmental Prediction
Research Facility
Superintendent, Naval Academy
(Professor Paul R. Van Mater, Jr.)
Superintendent, Naval Postgraduate School
Army Research, Office of the Chief of
Research and Development, Dept. of the Army
Director, Army Engineers Waterways Experiment
Station
Army Coastal Engineering Laboratory
District Engineer, Mobile District Corps
of Engineers
(W. W. Burdin)
Director of Defense, Research and Engineering
(Ocean Control)
Director, National Oceanographic Data Center
Director, Advanced Research Projects Agency
(Nuclear Test Detection Qffice)
(Dr. R. W. Slocum)
Chief, Oceanographic Branch, CERC
" (Dr. D. Lee Harris) ‘
(Dr. Cyril J. Galvin, Jr.)
Director, Woods Hole Oceanographic Inst.
(Dr. John C. Beckerle)
(Dr. N. N. Panicker)
National Oceanic & Atmospheric Administration,
U. S. Department of Commerce
(Dr. Moe Ringenbach)
Environmental Science Services Administration
U. S. Department of Commerce
Chief, Marine Science Center, Coastal
Geodetic Survey, U.S. Dept. of Commerce
Director, Bureau of Commercial Fisheries,
U. S. Fish and Wildlife Service
Allan Hancock Foundation
Gulf Coast Research Laboratory, Ocean Springs

(Copy 43)
(Copy 44)
(Copy 45)
(Copy 46)
(Copy 47)
(Copy 48)

(Copy 49)
(Copy 50)
(Copy 51)
(Copy 52)

(Copy 53)

(Copy 54)
(Copy 55)

(Copy 56)

(Copy 57)
(Copies 58-59)
(Copy 60)
(Copy 61)
(Copy 62)
(Copy 63)
(Copy 64)
(Copy 65)
(Copy 66)
(Copy 67)
(Copy 68)

(Copy 69)
(Copy 70)

(Copy 71)
(Copy 72)
(Copy 73)

(Copy 74)
(Copy 75)

Director, Lamont-Doherty Geological Observatory,

Columbia University, Palisades
(Dr. Arnold L. Gordon)
(Dr. Leonard E. Alsop)
(Dr. John E. Nafe)

(Copies 76-77)
(Copy 78)
(Copy 79)
(Copy 80)




(Dr. Keith McCamy) (Copy 81)

(Dr. John T. Kuo) (Copy 82)
(Dr. Tom Herron) (Copy 83)
(Dr. Manik Talwani) (Copy 84)
030700 Director, Scripps Institute of Oceanography,
University of California (Copy 85)
(Dr. Walter H. Munk) (Copy 86)
. (Dr. D. L. Inman) (Copy 87)
(John D. Isaacs) (Copy 88)
008500 Department of Geotechnical Engineering,
Cornell University (Copy 89)
008700 Department of Oceanography, Florida Institute
of Technology . (Copy 90)
008800 Department of Oceanography, Florida State
University"
" (Dr. K. Warsh) (Copy 91)
008200 Chairman, Department of Coastal Engineering,
University of Florida (Copy 92)
031800 University of West Florida
(Dr. A. Chaet) (Copy 93)
009200 Department of Physics, Georgia Southern
College
(Dr. Arthur Woodrum) (copy 94)
011800 Institute of Geophysics, University of
Hawaii , (Copy 95)
009300 Division of Engineering and Applied Physics,
Harvard University, Cambridge (Copy 96)
004900 Director, Chesapeake Bay Institute, Johns
Hopkins University (Copy 97)
(W. Stanley Wilson) (Copy 98)
031200 Officer in Charge, Applied Physics Laboratory, '
Johns Hopkins University (Copy 99)

013500 Director, Marine Science Center, Lehigh Univ. (Copy 100)
005700 Coastal Studies Institute, Louisiana State

University (Copies 101-102)
012000 Institute of Marine Sciences, University of
Miami
(Dr. W. Duing) (Copy 103)
010600 Great Lakes Research Division, University of
Michigan - (Copy 104)
008600 Department of Meteorology and Oceanography,
New York University (Copy 105)
009500 Environmental Science Center, Nova University
(Dr. W. S. Richardson) (Copy 106)
008900 Head, Department of Oceanography, Oregon
State University (Copy 107)

029900 Pell Marine Science Library, University of

Rhode Island : (Copy 108)




009100
002000
009000
010500

015200

011700

007700

Department of Oceanography and Meteorology,
Texas ASM University
Applied Physics Laboratory, University of
Washington
Head, Department of Oceanography, University
of Washington
Chairman, Department of Oceanography,
University of South Florida
National Institute of Oceanography, Wormley,
Godalming, Surrey, England

(Director)

(J. Ewing)

(Dr. L. Draper)
Institute fur Meereskunde Under Universitat,
West Germany

(Dr. Wolfgang Krauss)

(Dr. F. Schott)
Director, Defense Documentation Center

Dr. William P. Raney, Special Assistant for
Research, Navy Department, Washington,
D.C. 20350

National Oceanic and Atmospheric Administra-
tion, Boulder, Coloradeo 80302

(Earth Sciences Lab)

(Wave Propagation Lab)

Director, National Weather Service, NOAA,
8060 13th Street, Silver Spring, MD 20910
(Dr. William Kline, Sys Dev 0)

Director, National Ocean Survey, NOAA,
Rockville, MD 20852

Director, Pacific Marine Laboratory, NOAA
Seattle, Washington 98102

Earthquake Mechanism Laboratory, NOAA, 390
Main Street, San Francisco, CA 94105

Ports and Waterways Staff, Office of Marine
Environment and Systems, U. S. Coast Guard

Headquarters, 400 7th St., SW, Washington,

D.C. 20591

Director, National Center for Earthquake

Research, U. S. Geological Survey, Menlo Park,

CA 94025

Director, Seismological Laboratory, California

Institute of Technology, Pasadena, CA 91109

(Copies 109-110)
(Copy 111)
(Copy 112)

(Copy 113)

(Copy 114)
(Copy 115)
(Copy 116)

(Copy 117)
(Copy 118)
(Copies 119-130)

(Copy 131)

(Copy 132)
(Copy 133)

(Copy 134)
(Copy 135)

(Copy 136)
(Copy 137)

(Copy 138)

(Copy 139)

(Copy 140)

(Copy 141)




Director, Seismic Data Laboratory, Geotech-
Teledyne, 314 Montgomery St., Alexandria, VA

22314 (Copy
Director, Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (Copy

Director, Institute for Storm Research,
Houston, TX 77006 (Copy

The Offshore Company, P.0O. Box 2765, Houston,
TX 77001
(Crane E. Zumwalt) (Copy

Tetra Tech, Inc., 630 N. Rosemead Blvd.,

Pasadena, CA 91107
(Dr. J. I. Collins) (Copy
(Dr. Bernard LeMehaute) (Copy

Director, Geophysical Institute, University
of Alaska, College Br., Fairbanks,

Alaska 99701 (Copy
Chairman, Department of Geological Sciences,

Brown University, Providence, RI 02912 (Copy
Chairman, Dept. of Geophysics, University

of California, Berkeley, CA 94720 (Copy

Director, Institute of Geophysics and Planetary
Physics, University of California, Los
Angeles, CA 90024 (Copy

Director, Institute of Geophysics and Planetary
Physics, University of California, Riverside,
CA 92502 : (Copy

University of California, Hydraulic
Engineering Division, Berkeley, CA 94720
(Dr. R. L. Wiegel) (Copy

Chairman, Division of Fluid, Thermal, Aerospace
Sciences, Case Western Reserve University,
Cleveland, Ohio 44106 (Copy

Central Michigan University, Brooks Science Hall,
Box 12, Mt. Pleasant, MI 48858
(Dr. Kenneth Uglum) (Copy

Chairman, Department of Geophysical Sciences
The University of Chicago, Chicago IL 60637 (Copy

Columbia University, Dept. of Physics, New
York City, NY 10027
(Dr. Gerald Feinberg) (Copy

142)

143)

144)

145)

146)
147)

148)
149)

150)

151)

152)

153)

154)

155)

156)

157)




Columbia University, 202 Haskell Hall, BASR,
605 W. 115th St., New York City, NY 10025 .
(Dr. Alan G. Hill)

Chairman, Department of Geological Sciences,
Cornell University, Ithaca, NY 14850

Chairman, College of Marine Studies, Univ.
of Delaware, Newark, DE 19711

Chairman, Dept. of Oceanography, Duke Univ.,
Durham, NC 27706

Geophysical Fluid Dynamics Institute, Florida
State University, Tallahassee, FL 32306

(Dr. Ivan Tolstoy)

(Dr. Joe Lau)

Chairman, Center for Earth and Planetary
Physics, Harvard University, Cambridge,
MA 02138

University of Hawaii, Department of Ocean
Engineering, Honolulu, Hawaii 96822
(Dr. Charles L. Bretschneider)

University of Idaho, -Department of Physics,
Moscow, Idaho 83843
(Dr. Michael E. Browne)

University of Iowa, Institute of Hydraulic
Research, Iowa City, Iowa 52240
(Dr. Hunter Rouse)

Chairman, Department of Earth and Planetary
Sciences, Johns Hopkins University, Baltimore,
MD 21218

Chairman, Department of Earth and Planetary

(Copy
(Copy
(Copy

(Copy

(Copy
(Copy

(Copy

(Copy

(Copy

(Copy

(Copy

Sciences, Massachusetts Institute of Technology,

Boston, MA 02139

Massachusetts Institute of Technology, Dept.
of Naval Architecture and Marine Engineering,
Boston, MA 02139 :

(Attn: Dr. J. N. Newman)

Division of Physical Oceanography, School of
Marine and Atmospheric Science, University of
Miami, 10 Rickenbacker Causeway, Miami,
FL 33149

(Dr. Christopher N. K. Mooers)

(Dr. Claes Rooth)

(Copy

(Copy

(Copy
(Copy

158)

159)

160)

161)

162)
163)

164)

165)

166)

167)

168)

169)

170)

171)
172)




Chairman, Department of Natural Science,
Michigan State University, East Lansing,
MI 48823 (Copy

New York University, Institute of Mathematical
Sciences, New York City, NY 10003
(Dr. J. J. Stoker) (Copy

Chairman, Dept. of Geosciences, North Carolina
State University, Raleigh, NC 27607 (Copy

Chairman, Institute of Oceanography, 01d
Dominion University, Norfolk, VA 23508 (Copy

Chairman, Department of Geosciences, Geophysics
Section, The Pennsylvania State University,
University Park, PA 16802 (Copy

Chairman, Dept. of Eérth and Planetary Sciences,
University of Pittsburg, Pittsburg, PA 15213 (Copy

Chairman, Dept. of Geological and Geophysical
Sciences, Princeton, New Jersey 08540 (Copy

University of Rhode Island, Graduate School
of Oceanography, Kingston, RI 0288l
(Dr. Kern Kenyon) i (Copy

Chairman, Dept. of Geology, Rice University,
Houston, TX 77001 (Copy

Chairman, Dept. of Earth and Atmospheric
Sciences, St. Louis University, St. Louis,

MO 63103 (Copy
Director, Dallas Geophysical Laboratory,
Southern Methodist Univ., Dallas, TX 75222 (Copy

Director, Center for Radar Astronomy,
Stanford University, Stanford, CA 94305 (Copy

Chairman, Department of Geophysics, Stanford
University, Stanford, CA 94305 (Copy

Chairman, Dept.. of Geological Sciences,
University of Texas, Austin, TX 78712 (Copy

Chairman, Dept. of Geological and Geophysical
Sciences, University of Utah, Salt Lake

City, Utah 84112 ' . (Copy
Director, Marine Research Laboratory, University
of Wisconsin, Madison, WI 53706 (Copy

University of Wisconsin, Center for Great
Lakes Studies, Milwaukee, WI 53201
(Dr. David L. Cutchin) . (Copy

173)

174)

175)

176)

177)
178)

179)

180)

181)

182)
183)
184)
185)

186)

187)

188)

189)




Chairman, Dept. of Geology and Geophysics,
Yale University, New Haven, CT 06520 (Copy

Director, Navy Hydrographic Office, Buenos
Aires, Argentina (Copy

Chairman, Department of Geophysics and
Geochemistry, Australian National University,
Canberra, 2600, Australia (Copy

Monash University, Geophysical Fluid Dynamics
Lab., Clayton, Victoria, Australia 3168
(Dr. B. R. Morton) (Copy

Flinders University of South Australia, Horace
Lamb Center for Oceanographic Research,
Bedford Park, Adeleide, South Australia
5042
(Prof. Bye) (Copy

Chairman, Dept. of Oceanography, Dalhousie
University, -Halifax, Nova Scotia, Canada (Copy

Director, Geophysics Laboratory, University
of Toronto, Toronto, Canada (Copy

Director, Institute of Earth and Planetary
Physics, University of Alberta, Edmonton 7,
Alberta, Canada (Copy

Director, Institute of Oceanography, University
of British Columbia, Vancouver 8, British
Columbia, Canada (Copy

Chairman, Department of Geophysics and
Planetary Physics, The University, Newcastle
Upon Tyne, NE 1 7 RU, England (Copy

Cambridge University, Madlingley Rise,
Madingley, Cambridge CB3 OEZ, England
(Dr. M. S. Longuet-Higgins) (Copy

Chairman, Department of Geodesy and

Geophysics, Cambridge University, Madlingley

Rise, Madingley Road, Cambridge CB3 OEZ

England (Copy

Director, Institute for Coastal Oceanography
and Tides, Birkenhead, Cheshire, England (Copy

Director, Oceanographic Research Institute of
the Defense Dept., Kiel, West Germany (Copy

Abteilung fur Theoretische Geophysik,
Universitat Hamburg, Hamburg, West Germany (Copy

190)

191)

192)

193)

194)

195)

196)

197)

198)

199)

200)

201)

202)

203)

204)




Institute for Advanced Studies, 64 Merrion
Square, Dublin, Ireland
(Dr. John Lighton Synge)

Director, NATO Saclant ASW Research Centre,
La Spezia, Italy

]

Director, Geophysical Institute, University
of Tokyo, Tokyo, Japan

University of Auckland, Dept. of Physics,

Auckland, Dept. of Physics, Auckland, New

Zealand '
(Professor A. C. Kibblewhite)

Chairman, Dept. of Marine Science, University

of Puerto Rico, Mayaguez, Puerto Rico 00708

(Copy 205)
(Copy 206)

(Copy 207)

(Copy 208)

(Copy 209)










